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Abstract

This paper develops a new method for valuing land, a key asset on a nation’s balance sheet.
The method first employs an unsupervised machine learning method, kmeans clustering,
to discretize unobserved heterogeneity, which we then combine with a supervised learning
algorithm, gradient boosted trees (GBT), to obtain property-level price predictions and
estimates of the land component. Our initial results from a large national dataset show
this approach routinely outperforms hedonic regression methods (as used by the U.K.’s
Office for National Statistics, for example) in out-of-sample price predictions. To exploit
the best of both methods, we further explore a composite approach using model stacking,
finding it outperforms all methods in out-of-sample tests and a benchmark test against
nearby vacant land sales. In an application, we value residential, commercial, industrial, and
agricultural land for the entire contiguous U.S. from 2006-2015. The results offer new insights
into valuation and demonstrate how a unified method can build national and subnational
estimates of land value from detailed, parcel-level data. We discuss further applications to
economic policy and the property valuation literature more generally.
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“. . . the commodities which compose the whole annual produce of the labour of every country,
taken complexly, must resolve itself into the same three parts, and be parceled out among
different inhabitants of the country, either as the wages of their labour, the profits of their
stock, or the rent of their land. . . Wages, profit, and rent, are the three original sources of all
revenue as well as of all exchangeable value.”
–Adam Smith (1776, The Wealth of Nations – Book 1, Chapter VI)

“The heart of the SNA describes how labour, capital and natural resources including land are
used to produce goods and services. These goods and services are used for the three economic
activities recognized in the SNA, production, consumption and accumulation.” –U.N. System
of National Accounts 2008, §3.19

1 Introduction

Land is, quite literally, a foundational asset for any economy. Extending back to at least Smith (1776),

economists have long understood that for households and firms land is both a key input to production and a

substantial asset. Prior research has estimated that, in aggregate, not only is land a considerable asset in its

own right (e.g., Davis (2009), Larson (2015), Wentland et al. (2020)), but the fluctuations in its value can

play a pivotal role in the business cycle, as illustrated by the real estate boom and bust that coincided with

the Great Recession in 2007-2009. This literature has argued that the infamous housing boom and bust of the

2000s is often mischaracterized, instead suggesting that it would be more aptly called a land boom and bust

(Davis et al., 2017, 2021), citing evidence that much of the fluctuation in the value of residential property can

be attributed to the underlying price of land (see also Kuminoff and Pope (2013)). Given both its economic

significance, policy relevance,2 and the diversity of approaches used in the literature to investigate the value

of this asset, the purpose of this paper is to revisit a timeless question using new methods and new data: how

much is land worth? More specifically, can modern machine learning (ML) methods using “Big Data" from

across the United States deliver significant advantages over prior approaches and provide new insights into

this question or property valuation more generally?

This paper shows ML methods can indeed do both. We cultivate a unique approach that pairs ML methods,

kmeans clustering and gradient boosted trees (GBT), with a linear hedonic regression method to estimate

land value at scale, generating granular parcel-level estimates of residential, commercial, industrial, and

agricultural land that we then use to construct national and subnational values. We find a composite approach

outperforms more conventional hedonic methods (as used by the U.K.’s Office for National Statistics, for

example) when we benchmark predicted values from these models against observable market prices (i.e., in

out-of-sample tests predicting transaction prices of single-family properties and in comparing land values of

2Beyond its macroeconomic significance as an asset, from an economic policy standpoint taxation of land has
been put forth by economists since George (1884) as one of the more efficient forms of taxation. As a result, most
countries around the world have either a land tax or property tax on real estate, although one of the frequently
cited issues of land taxation is the inherent difficulty in disentangling land from structure value McMillen and Zabel
(2022). In the U.S., property tax revenue (which land is a large component of this tax base) was $615 billion in 2020,
which was larger than corporate income taxes ($276 billion), for example. Source: BEA NIPA Tables 1.12 & 3.5 -
https://apps.bea.gov/iTable/index_nipa.cfm.



developed land near vacant land sales). While the primary contribution of this paper is methodological, we

employ the new method in an application to provide a proof-of-concept detailing how it can scale from micro

data to macroeconomic statistics. Specifically, we construct an aggregate valuation of private land for the

entire contiguous U.S. from 2006-2015, leveraging micro-data from Zillow (ZTRAX) containing millions of

property transactions and detailed information corresponding to each property.

Using this new approach, we find private land in the contiguous U.S. was worth an estimated $24 trillion

in 2015, or approximately $19,050 per acre, with large variation by geography and land-use category. For

example, we find that residential land in dense urban areas of the Pacific census division (as defined by the

U.S. Census Bureau) was worth an average of $3,966,805 per acre in 2015, while agricultural land was worth

an estimated $12,275 per acre on average. The U.S. national time-series dynamics we observe with residential

land are consistent with procyclical land value fluctuations over the infamous boom-bust-recovery period

of the last two decades. However, we find a great deal of variation in these dynamics, as some regions and

land-use types experienced much milder cycles (i.e., much flatter peak to trough) and the timing of this

trough also varied by region over this period. In addition, we use the composite approach to estimate land

leverage, or the percentage of the total (i.e., land + structure) property value comprised by land value for

each category and region. Although more stable than land prices, we find land leverage can still have sizable

fluctuations over time and can vary substantially across regions. On average, land leverage was around 2/3

for single-family properties in New England during most years of our sample, for example, but is only about

1/4 to 1/3 in the South Atlantic census division. Finally, our pilot estimates show how this method could

help produce a set of land accounts consistent with international statistical standards set out in the System of

Environmental-Economic Accounting Central Framework (SEEA-CF) and incorporate land onto the balance

sheet as a distinct “non-produced, non-financial asset” prescribed by the U.N. System of National Accounts

(SNA). Because this method is constructed using property-level data, an enduring potential benefit of this

project is that the method can be easily taken off the shelf by researchers, policy analysts, appraisers, local

tax assessors, statistical agencies, central banks, and others with local micro-data (using our code or their

own adaptation of it), generating a through line from micro to macro data.

1.1 Hedonic vs. Cost-based Approaches to Land Valuation, Trends in Accounting, and Fair

Market Value – Why Now?

Conceptually, one novelty of our proposed approach is that it exemplifies how 21st century methods and data

may have caught up to the accounting standards’ valuation principles. When valuing products, services, and

assets, national economic accounts follow accounting standards set out by the SNA (2008) and SEEA-CF

(2012), which prioritize valuation via observable transactions in the market to obtain their fair market value

whenever possible. When measuring Gross Domestic Product, for example, not all products and services will

have observable market values (e.g., government expenditures) or sufficient transaction data, necessitating



alternatives and even cost-based methods to proxy for market value. Indeed, a central issue with valuing a

nonfinancial asset like land at market value on the balance sheet is that these assets are often heterogeneous

(differing in size, location, quality, etc.), sold infrequently, and commonly bundled with another asset like a

structure in the transaction. In these circumstances, when similar but not identical assets are sold at market

prices, the SNA recommends methods using market transactions of similar products/assets, which should

then make adjustments for quality and other quantifiable differences.3 This broadly characterizes the hedonic

approach to land valuation, which exploits variation in market prices across heterogeneous assets to estimate

the marginal value of each property characteristic with the intent to separate the value of land and structure

components.4 Recently, the U.K.’s Office for National Statistics (ONS) has applied a hedonic method to

valuing land in the U.K., adapting the hedonic model used for their House Price Index (HPI) for this purpose

(Johannsson and Nguyen, 2022).

The hedonic approach has gained traction in the 21st century primarily as detailed transaction and property

characteristic data has made it more tractable to do at a national scale.5 Pragmatically, cost-based approaches

are still deployed in the national accounts as a response to lack of sufficiently high quality market price data

for certain assets and products. Hence, a common approach to land valuation by both national statistical

offices and the broader academic literature has been some variation of the residual method, which usually

rely on construction cost data (which is often high-quality and readily available). For properties containing

a structure, this method first estimates the value of the structure based on construction cost data, then

subtracts this value from the total property value, either transacted or estimated value, where the value

left over (i.e., the residual) is the value of the land component.6 This method should be most accurate

for new properties, when the structure was just built, and the market land value should track the residual

derived from this replacement cost relatively well (McMillen and Zabel, 2022). As the property ages, residual

3Regarding valuation using market prices: “When market prices for transactions are not observable, valuation
according to market-price-equivalents provides an approximation to market prices. In such cases, market prices of the
same or similar items when such prices exist will provide a good basis for applying the principle of market prices.
Generally, market prices should be taken from the markets where the same or similar items are traded currently in
sufficient numbers and in similar circumstances. If there is no appropriate market in which a particular good or service
is currently traded, the valuation of a transaction involving that good or service may be derived from the market
prices of similar goods and services by making adjustments for quality and other differences.” §3.123, SNA 2008.

4Regarding hedonic valuation methods: “A more general and powerful method of dealing with changes in quality
is to make use of estimates from hedonic regression equations. Hedonic regression equations relate the observed
market prices of different models to certain measurable price-determining characteristics. Provided sufficiently many
differentiated models are on sale at the same time, the estimated regression equation can be used to determine by how
much prices vary in relation to each of the characteristics or to predict the prices of models with different mixes of
characteristics that are not actually on sale in the period in question. . . The technique has also been used for housing
by regressing house prices (or rents) on characteristics such as area of floor space, number of rooms or location. . . ”
§15.83-84, SNA 2008.

5In their description of their HPI model, ONS’s notes that it relies on transaction and property data going back to
1995 in England and Wales, but as recent as 2004 and 2005 for Scotland and Northern Ireland, respectively. The U.S.
data shares a similar constraint, as we have a great deal of data going back to the mid-1990s, but it is most complete
in the early to mid-2000s for all regions. We return to this discussion in the data section below.

6The OECD Manual Measuring Capital (2009) notes: “Information on the price and quantity of structures and
buildings without land is often more readily available when data on the stock of dwellings uses the perpetual inventory
method with investment series for structures and buildings from the national accounts. Investment surveys on
construction permit relatively easy collection of information on the value of structures excluding land.” (p. 155)

https://www.ons.gov.uk/economy/nationalaccounts/uksectoraccounts/articles/improvingestimatesoflandunderlyingotherbuildingsandstructuresinthenationalbalancesheetuk/2022


approaches also account for depreciation of the structure over time to approximate the land value of a new

property for the non-new housing stock. This is why the residual method is also called the “depreciated cost”

approach.7 More recently, Clapp and Lindenthal (2022) and others have developed hybrid variations of this

approach, which allow for a more nuanced decoupling of structure and land value, and the evolution of these

values separately over time.8

There are both practical and conceptual challenges with the residual method and other methods that rely

on cost-derived estimates for the national accounts. From a practical standpoint, Statistics Denmark, for

example, had employed a variation of the residual approach where they used construction cost data in

combination with a depreciation schedule of the structure to estimate land value. The 2009 OECD manual,

Measuring Capital, relays the following anecdote based on the Danish experience and how market dynamics

can produce strange results using this method:

“During the recession in the late 1980s, real estate prices declined whereas acquisition prices
for new buildings increased as shown in the figure below. In the PIM estimations of the
net stock of buildings, it was assumed that the prices of existing buildings (for a given age)
followed the prices of new buildings which increased steadily. With decreasing prices for
real estate and increasing prices for buildings, the residual – the value of land – declined.
However, the decrease was so large that the value of land becomes negative for some years
during the recession. A negative value for land is not an economically meaningful result.”
- p.162, OECD 2009

Indeed, McMillen and Zabel (2022) noted that, “this somewhat embarrassing outcome is not uncommon” (p.

4), as researchers have made various adjustments to either the residual method itself, or have imposed an

arbitrary floor on its value.9 From a conceptual standpoint, an additional drawback of residual methods is

that accounting principles in the SNA recommend valuation of market-price-equivalents, generally favoring

fair market value over historic cost-based accounting methods (at least for non-new properties). While

cost-based methods are widely used in the national economic accounts, as noted above, these methods are

primarily used if “no appropriate market” exists or market price data is not available for a particular good,

service, or asset, where cost can be used as a less-than-ideal substitute for market price.10

7This includes the pioneering work by Davis and Heathcote (2007), Davis and Palumbo (2008), and more recent
variations using finer, more detailed data like Davis et al. (2021), among numerous others using a variation of the
residual/depreciation cost method. For a more comprehensive review of the residual method and related literature,
see also Clapp et al. (2021).

8McMillen and Zabel (2022) describe the Clapp and Lindenthal (2022) approach as a hybrid between a bundled
goods approach and the residual method, which is related conceptually to the “land share" approach of Bourassa and
Hoesli (2022). For more detail, see McMillen and Zabel’s (2022) summary of the of the Journal of Housing Economics’
special issue on land valuation where these and other methods are showcased.

9In response to the Denmark scenario, the OECD (2009) manual has a nod to a the hedonic approach and methods
relying primarily on market prices in the second-hand market: “a way forward would be to use asset prices from the
second-hand market, combined with quality characteristics of transacted real estate. . . [and] this is a very difficult
task, but might be necessary if reliable and consistent estimates for the value of buildings, land and real properties
should be produced.” p. 163.

10Regarding cost-based alternatives: “If there is no appropriate market from which the value of a particular
non-monetary flow or stock item can be taken by analogy, its valuation may be derived from prices that are established
in less closely related markets. Ultimately, some goods and services can only be valued by the amount that it would
cost to produce them currently. . . ” §3.135, SNA 2008. We will return to a related cost conceptual issue in section 2.



The rise of “Big Data” and machine learning in the 21st century has changed this pragmatic dynamic, not

only in the national accounts, but in private sector accounting as well. There has been a longstanding debate

on fair value accounting versus historic cost accounting, highlighting trade-offs with each approach and

circumstances where one may be preferred over the other (Jaijairam et al., 2013). U.S. GAAP standards,

for example, had historically recommended cost accounting methods for non-financial assets like property,

plants, and equipment (PPE), while IFRS standards follow fair market value methods. However, Warren Jr

et al. (2015) observe that Big Data is facilitating the convergence of the two standards towards fair market

value, “with Big Data . . . helping to construct a global accounting regime with fair value accounting as

a key cornerstone . . . [as] it will enhance measurement process through new forms of evidence to support

management’s accounting for transactions” (p. 404). Recent literature has also shown how machine learning

has been adapted to improve firm-level accounting estimates and why it is important for accounting going

forward Ding et al. (2020); Bertomeu (2020). Broadly, national accounts and official statistics are on board

with this trend and recognize now as an inflection point.11 In their introduction to the NBER volume title Big

Data for Twenty-First-Century Economic Statistics, Abraham et al. (2019) conveyed precisely this sentiment:

“The message of the papers in this volume is that Big Data are ripe for incorporation into
the production of official statistics. In contrast to the situation two decades ago, modern data
science methods for using Big Data have advanced sufficiently to make the more systematic
incorporation of these data into official statistics feasible.”
- Abraham et al. (2019), p. 3

1.2 Contributions to the Valuation Literature and National Accounts

This paper makes several contributions to the academic literature. Methodologically, this is the first paper

to apply a two-step machine learning approach, gradient boosting trees paired with kmeans clustering, to

land valuation on a national scale in a way that conceptually tracks a hedonic method. As noted above, one

reason the hedonic method is used by ONS in the U.K. is that the richness of their data is now reasonably

well-suited to explain much of the variation in property prices, as the characteristics in their regression model

explain about 80% of the variation in home prices (Johannsson and Nguyen, 2022). We find that our ML

approach delivers a number of advantages over land valuation using hedonic models like those used by ONS

or in the academic literature like Kuminoff and Pope (2013), Diewert et al. (2015), Wentland et al. (2020),

among numerous others. Using the Zillow ZTRAX data, we compare the performance of multiple models (a

variation of the ONS model, the Wentland et al. (2020) model, and our GBT model) when predicting prices

of single-family residential properties, the land-use category where the data is richest and our results are most

comparable to the literature. On average, the ML approach models the sales price outcome substantially

better than linear (OLS) hedonic models, as evidenced by a significant reduction in root-mean-square-error

and mean-absolute-error in the out-of-sample test set. Since the structure and land value are essentially
11See also Moyer and Dunn (2020) for a discussion of Big Data and data science applications in the national

economic accounts.



decomposed from the coefficients that predict sale price, this is an important benchmark given that any error

in the model’s sales price prediction may be reflected in the error of its components, and thus the land value

estimate.

Second, our adaption of an unsupervised machine learning approach, kmeans clustering, as an alternative to

geographic-specific fixed effects provides a novel path forward for hedonic modeling and property valuation

more generally. As we describe in more detail later in the paper, it transforms the modeling process into

one that more closely mirrors the approach of professional appraisers. In the U.S., for instance, mortgage

underwriters generally require a professional appraisal of the property. These appraisals typically assess the

market value of the property based on nearby, comparable properties (or “comps”). Location is obviously

an important determinant of market value, as any real estate agent will repeat three times; but, it is not

the only determinant of value or source of time-invariant heterogeneity assessed in the appraisal. Appraisers

will often draw on comps located further away (outside a zip code or census tract or some other small unit

researchers use for spatial fixed effects) if the other characteristics of the property are a better match in terms

of predicting price. The kmeans clustering algorithm mimics this approach more systematically by allowing

the data to generate groups of comparable properties that balance this location (latitude, longitude) trade-off

and minimize variation in certain property characteristics (e.g., bedrooms, bathrooms, etc.).

In the context of property valuation, we show the benefit of the kmeans clustering approach is two-fold. First,

it provides a tractable alternative to the well-known “thin cell problem” in urban economics, where granular

spatial fixed effects, such as census tract, often contain too few observations in a given time period. Recent

work by Davis et al. (2021), for example, employ zip code fixed effects to account for geographic-specific

heterogeneity, where the initial data includes 18, 322 zip codes nationally. Other studies use census tracts or

block groups with even finer spatial granularity. However, there is a well-known trade-off here, econometrically.

As the level of fixed effects becomes more fine-grained (i.e., the number goes up), there are few observations

per group in the sample. At some point there may be very few sales in a given census tract or zip code,

resulting in many of the usual overfitting problems and sensitivity to within-group outlier sales.12 We show

that a kmeans clustering approach can generate larger, yet more relevant, groups for predicting price, as it

minimizes variation in characteristics of the property and location much like an appraiser (e.g., a cluster of

predominantly 4 bedroom, 3 bathroom homes in a location that crosses several census tracts or zip codes

will have far less variation in bedrooms and bathrooms than a given single census tract or zip code). This

allows our ML model to incorporate fewer fixed effects (or clusters) in order to avoid the small N problems

among small geographic areas, while preserving high performance for model fit (as shown by our RMSE/MAE

statistics) by grouping more homogeneous homes across greater dimensions than geography alone. Second,

this approach systematically discretizes the unobserved heterogeneity akin to the approach described by

12Davis et al. (2021)and Wentland et al. (2020) sidestep this issue by establishing some arbitrary cutoff that
eliminates geographies that include fewer than 50 sales, for example. However, deciding what this cutoff should be is
inevitably ad hoc and can have a substantial impact on the final results.



Bonhomme et al. (2022), mimicking the practice of professional appraisers by grouping more homogenous

homes across observables. As Bonhomme et al. (2022) pioneered in an analogous application, the unobserved

heterogeneity is highly related to these characteristics over which we are generating clusters, where clustering

allows us to "discret[ize] heterogeneity as a dimension reduction device rather than as a substantive assumption

about population unobservables" (p.2). 13 In an era where Big Data and large numbers of fixed effects (and

interactions) are the norm in applied microeconomics more generally, a key contribution of this paper is to

demonstrate an early empirical application of the Bonhomme et al. (2022) concept that likely has broader

applications outside of land valuation.

Third, we show how a simple model stacking method adapted from the forecasting literature can further

improve on the ML approach by creating a weighted composite measure. In our comparison of methods,

we identify circumstances where the linear hedonic method proposed by Wentland et al. (2020) performed

relatively well at predicting property prices (i.e., the ML method is not strictly better in every single

circumstance). Thus, we find the combined linear hedonic (HD) and GBT composite measure outperforms

all methods in out-of-sample tests predicting property prices of single-family homes. As an out-of-sample

test, we compare all methods’ predictions against sales of nearby vacant land. The GBT-alone and composite

measures of land value track the value of vacant land sales closest when the vacant land market is most

robust, at the national peak of new housing starts during our sample period, which is when we would expect

vacant land values to be most representative of nearby developed properties.14 Given its performance in

out-of-sample tests, we then deploy the composite method more broadly to estimate land value for the

contiguous U.S. (and 9 census divisions) for residential, commercial, industrial, and agricultural land for each

year over a decade (2006-2015).

Finally, in addition to the contributions to the academic literature outlined above, this research is highly

relevant to economic measurement and policy, as accounting for land on the national balance sheet is a

notable gap in the national economic accounts for most countries. Although land is clearly a significant asset,

there is virtually no available information directly quantifying the aggregate value of land itself in the official

accounts (either in the US or the vast majority of countries around the world).15 This fact might be surprising

13For example, a cluster of predominantly 4 bedroom-3 bathroom homes in a given location is more likely to have
similar upgraded kitchen features (i.e., unobservable to researchers with this kind of data or “drive-by appraisers” with
similar information) than homes within a given census tract composed of a hodgepodge of 2 bedroom-1.5 bathroom
homes and 5 bedroom-3 bathroom homes. We return to this point in our description of the kmeans clustering
methodology below.

14Our goal was to develop a method steered by transaction prices of developed land to avoid selection bias issues of
using vacant land alone. But, our predictions should still should be reasonably in line with vacant land prices when
we compare apples-with-apples and vacant land markets are most robust. Both developed and vacant properties are
relevant transaction prices. When vacant land transaction prices should exhibit the less selection bias, in periods when
there are a lot of vacant land sales and a lot of development, the difference in our predictions and vacant land price
should also be less. We find exactly this result. We return to this point in our discussion of the results comparing
vacant land to predictions.

15Land is categorized as a “non-produced, non-financial asset” on a country’s balance sheet in the SNA standard. In
the U.S., the national asset balance sheet is part of the Integrated Macroeconomic Accounts, which is jointly produced
by the Bureau of Economic Analysis and the Federal Reserve Board. Land accounts are also a distinct set of satellite
accounts in the UN SEEA Central Framework. Prior work by Davis (2009), Larson (2015), and Wentland et al. (2020)



to classical economists like Adam Smith, who mention land explicitly in his early writings on national output,

as well as modern day economists and decision-makers who use aggregate data from the national income

and product accounts (NIPA) like gross domestic product (GDP) to understand a wide variety of national

economic phenomena. While Wentland et al. (2020) and ONS in the U.K. provide examples of how this might

be accomplished with a linear hedonic valuation approaches, we build on this by putting forth a unifying,

data-driven, composite ML method that substantially improves on prior approaches and would be replicable

by any country around the world with similar property data available.

More generally, the incorporation of detailed land accounts into the national accounts is part of a broader

international trend in the 21st century in expanding the scope of the national economic accounts to include

more non-produced capital or “natural capital” that quantify the value of our natural resources (Boyd et al.

(2018)), along with a greater interest in information on land prices in particular (Coomes et al., 2018). In fact,

the UN has recently reported that over 90 countries produce at least one SEEA-based environmental-economic

account as of 2021. Yet, the US does not currently produce any formal environmental-economic accounts.

Given that land is an asset at the intersection of the traditional (SNA) national accounts and environmental

accounts, as outlined in the System of Environmental-Economic Accounting Central Framework (SEEA-CF),

valuing land presents a logical starting point for expanding the scope of what the national accounts measure

in the US. A more systematic, transparent approach to modeling can provide more confidence in the results

by the public; and, if similar methods are used across countries for national accounts it would facilitate

comparability of the resulting statistics. In the Discussion section of this paper, we return to this point,

discussing potential next steps for this work in the context of the national accounts. In addition to potentially

building a national account based on these estimates for macro applications, like Davis et al. (2021), once

published, we intend to make our land value estimates available at a variety of subnational levels to all who

would find them useful in their research, policy-making, or other decision-making.16

2 Measuring land value: Conceptual background, literature, and the hedonic

approach

2.1 How is land valued? Some background and discussion of recent literature

Broadly speaking, there are two ways to value land using market data. One approach directly measures land

value by observing what land (without a structure) sells for on the open market and use the market prices

and quantities we observe to total an aggregate value of land, much like one would tabulate the aggregate

value of any commodity, good, or service. But, for a number of reasons, using price and quantity data alone

has cultivated a number of different methods to remedy this gap. As of the writing of this draft, BEA has not adopted
a particular method for land valuation, nor does BEA officially endorse any particular method at this time.

16Given that large national datasets are becoming more commonly used in the most recent literature (e.g., Davis
et al. (2021); Nolte (2020); Wentland et al. (2020)), we interpret this micro-to-macro approach to be the new standard
in the land valuation literature.



will not suffice in a vast majority of circumstances. Even in the case of agricultural land, where this approach

might seem most reasonable given that many of the transactions will not include a structure of any kind,

price and quantity alone might not be enough information to generate a reasonable estimate because of the

problem that not all land sells in a given period, and thus the market sample may not be representative of

the land off the market. Further, there is still significant heterogeneity even among agricultural land in terms

of soil quality, geographic proximity to markets and infrastructure, and numerous other factors that require

more than simply prices and quantities.17 Thus, these core problems (i.e., the fact that not all land sells in

a given period, properties are heterogeneous, and that the land that does sell is typically bundled with a

structure) has spawned a deep literature that utilizes additional information to get at the underlying value of

land in a more sophisticated way.

The more common approach to land valuation can be described then as an indirect method, which refers to a

set of approaches that use additional information to estimate the value of land from some other value (like

a total property value containing both the structure and land) or an extrapolation from vacant land sales

(to similar properties with structures, for example). According to the 2015 Eurostat-OECD Compilation

Guide on Land Estimation, these include the residual, land-to-structure ratio (also called land leverage), and

hedonic approaches. A recent symposium of papers by the Journal of Housing Economics has also included

studies that estimate land value from teardowns,18 variations of vacant land interpolations19, and a number

of other innovative methods 20.

These indirect approaches reasonably assume that the value of the property is the value of the bundled

components of land and associated structure(s). Conceptually, land and the structure(s) are assumed to

be separable assets, and the values of these bundled components do not necessarily move together (Bostic

et al., 2007; Clapp and Lindenthal, 2022). For example, land may appreciate in value over time while the

associated structure depreciates through wear-and-tear or consumption of fixed capital (with some exceptions

and limitations, e.g., historic structures). In its simplest form, we might think of this as a linear and additive

model where the selling price of a property V , the value of the structure psS, and the value of the plot of

17The 2015 Eurostat-OECD Compilation Guide on Land Estimation includes a variety of caveats when discussing
this method, even in nearly ideal conditions. It states: “the direct method is normally preferred by countries for the
valuation of agricultural land on which no buildings or structures are situated. . . [however] since the value of land is
highly dependent on several factors e.g., location, land use and the presence of nearby facilities, such information
should be incorporated in the land price data” (p. 60).

18See McMillen and Zabel (2022), which builds on a number of papers using a similar approach, including: Gedal
and Ellen (2018); Munneke and Womack (2015); McMillen and O’Sullivan (2013); Dye and McMillen (2007); Munneke
(1996); Rosenthal and Helsley (1994).

19See Albouy and Shin (2022) and Larson and Shui (2022) for original adaptations of interpolating land prices from
vacant land sales using Bayesian and Kriging methods, respectively. For other innovative approaches using vacant
land, see also Nolte (2020), Albouy et al. (2018), Barr et al. (2018), Turner et al. (2014), Nichols et al. (2013), Combes
et al. (2019), and Haughwout et al. (2008). While these studies take a number of sophisticated approaches to try
to address various drawbacks to using vacant land, a fundamental issue with using vacant land transactions is that
vacant land may suffer from important systematic selection issues and unobservable differences. We return to this
point later when we discuss comparisons to vacant land value.

20Zabel (2022),Bourassa and Hoesli (2022), and Longhofer and Redfearn (2022) present novel variations of hedonic
and land-share methods.



land, plL, can be written as:

V = pSS + pLL (1)

where S is the size of the structure, L is the land area, and pS and pL are prices of a unit of S and L

respectively. The challenge then is to best determine either pS or pL given that we have information on V , L,

and S in real estate sales data, or we might be able to infer structure value in other ways (e.g., construction

cost data). Indirect methods differ primarily on how land value is decoupled from the property’s total value.

As we noted in the introduction above, the residual approach – or some variation thereof – is often used by

both governments and academics, as they generally rely on construction or builder’s costs as replacement

costs (e.g., Davis and Heathcote (2007); Davis and Palumbo (2008)). Other variations of this incorporate

demolition costs factored into “teardowns" which are near substitutes for vacant land (e.g., Rosenthal and

Helsley (1994); Dye and McMillen (2007)). Davis et al. (2021) employ a novel cost-based residual approach

by using very detailed appraisal records. Their dataset constitutes a very large portion of single-family homes

in the U.S., and they provide land value results for various geographies, which we use later in the paper for

comparison purposes. However, even under circumstances where researchers have ideal cost data to pin down

the cost of the structure most accurately, the key question before us is: is this the right conception of land

value for the national accounts?

2.2 How should land be valued? A national accounts perspective

Though our review above is not exhaustive, we should acknowledge here an important takeaway from the

literature: there are numerous, reasonable approaches to land valuation that exploit different types of data to

get at this fundamentally difficult question. In fact, the Eurostat-OECD manual on best practices for land

valuation (2015 Compilation Guide on Land Estimation), acknowledges that no method is perfect, and states

that, “there is no ’best’ method; which of these approaches should be used, heavily depends on the available

data sources" (p. 66). However, there are two important aspects from the SNA’s valuation principles that

make the hedonic approach compelling over the cost-based approaches. The first, which we discussed at

some length in the introduction, is the SNA’s emphasis on using observable market values to the extent

possible, which itself is contingent on available data. The second important aspect of SNA valuation that is

relevant here, which we had not touched on in the introduction, is the idea that the SNA measures value in

the market in whatever context goods, services, or assets are exchanged. The standard emphasizes that, “a

market price should not necessarily be construed as equivalent to a free market price” (SNA 2008, §3.119).

The context may be competitive, monopolistic, or somewhere in between – market value is what prevails in

the (imperfect) markets we observe.21

21Specifically, the SNA goes on to states: “that is, a market transaction should not be interpreted as occurring
exclusively in a purely competitive market situation. In fact, a market transaction could take place in a monopolistic,



Key assumptions underlying many cost-based approaches, however, are neoclassical assumptions about

competitive markets and rational consumers, which clarify the link between construction cost, structure value,

and market prices. In a competitive market, competition among builders and contractors should imply that

the long-run average (economic) cost of a new structure should approximate its market value. By extension,

this would suggest cost data are good proxies for market value and are broadly representative. Further, homes

built on vacant lots of land would, rationally, be built to their highest and best use (HBU), as the residual

land value then reflects this scenario. Clapp and Lindenthal (2022) summarize these assumptions and the

residual approach being derived from the work of Alonso (1964), Muth (1969), and Mills (1972) – which is

referred to as AMM theory.22 The assumptions underlying AMM theory may very well characterize a sizable

portion of the market in the U.S., but prior empirical work on construction costs in the U.S. cast doubt

on the strongest form of these assumptions. Somerville (1999) and Gyourko and Saiz (2006), for example,

document large differences in construction costs, and substantial heterogeneity in competitive environments,

across U.S. regional markets. If these markets do not closely approximate perfectly competitive markets, then

conceptually the SNA standard would not favor a valuation method that assumes a residual value derived

from free market structure price across the board.

This is not necessarily an indictment of AMM theory or methods derived from it that focus on HBU value;

on the contrary, AMM theory and these methods that try to pin down HBU value are incredibly useful

for a variety of purposes. One of the explicit purposes for Clapp and Lindenthal (2022), among numerous

other studies deriving residual-based land value, is to advance land valuation for the purposes of improving

assessments related to taxation. A key argument for land taxes among Georgism proponents is that a tax on

land incentivizes development (George, 1884), which is, in its strongest form, implicitly a HBU value concept

relying on how that land might be used in an efficient market. HBU value is also highly useful for developers

for similar reasons. Nevertheless, because residual/cost-based approaches rely on a concept of value that

assumes land and structure to be in a more ideal state of HBU, from an SNA perspective, most common

residual approaches are not ideal for the national accounts.

The hedonic approach, on the other hand, takes sale prices of properties as they are in the market, however

competitive or monopolistic that market may have been that produced those prices. This approach regresses

actual sale prices of properties we observe in the market on a variety of detailed characteristics of the land

and structure, which yields an estimate of the market value of the structure using variation in the data

from comparable structures and properties. One recent study by Rambaldi and Tan (2019) described a key

advantage of the hedonic method is that “it is a revealed preference method that estimates the contribution

monopsonistic, or any other market structure. Indeed, the market may be so narrow that it consists of the sole
transaction of its kind between independent parties.” SNA 2008, §3.119

22Clapp and Lindenthal (2022) note that, “In AMM theory, land values are dependent on a structure that is built
to maximize the present value of the location, i.e., HBU structure. Land value at the time of new construction is a
residual equal to the HBU property value less the construction costs. . . [where] construction cost equals structure
value” (p. 1-2).



of each characteristic to the overall price” (Rambaldi and Tan 2019, p. 5) as the coefficients each represent

an incremental or marginal contribution to the price based on available data. This allows for a nuanced,

location-specific estimate based on observed market prices as opposed to costs.23

Consider a simple example. Suppose we observe three developed property sales adjacent to one another. To

keep the numbers simple, one sells for $300,000, the second sells for $400,000, and the third property sells

for $500,000 in the same period. The first two properties sit on identical plots of land (say, 1 acre), but the

square footage of the second’s structure is twice as large (say, 1,000 vs. 2,000 sqft.). The third property has

an identical structure as the first one (also 1,000 sqft.), but now sits instead on 2 acres. In this scenario, the

hedonic model lines up with intuition. Comparing the first and third properties with identical structures, the

extra acre yielded a $200,000 higher sale price. Comparing the first and second properties, an extra 1000

square feet of living area yielded a $100,000 increase in sale price. Thus, a regression that explains 100% of

the variation in sale prices here would simply yield these values as coefficients on square footage (in 000s

of sqft) and acreage if we regressed these exact data points in a linear hedonic model. While this stylized

example abstracts away from numerous complicating factors when working with real data (like location

differences, time period differences, other property characteristics and market dynamics),24 the basic intuition

is that we are using variation in observed market prices and deducing the marginal value from variation in

property characteristics. This method is agnostic about whether these structures were built for their “highest

and best use” and simply infers what its fair market value is based on what the marginal characteristics

are selling for on the market, as the property currently exists, and based on the revealed preferences of the

market as we find it.

2.3 The hedonic approach - a baseline method suited to Big Data

Our data, which we will discuss in more detail in section 3, contains detailed information about transactions

and property characteristics. Generally, this type of data is well-suited to a hedonic approach to estimate

land value, as we alluded above in the discussion of its use by the U.K. ONS,25, albeit with some well-known

drawbacks. We adapt (and tweak) the hedonic approaches used in Johannsson and Nguyen (2022) and

Wentland et al. (2020) to establish a baseline approach for comparison to our ML approach described later

in Section 4. The hedonic model typically relies on a standard ordinary least squares regression model and
23The hedonic valuation fits with the idea of land value put forth in the 2015 Guide stating that: “on the

balance sheet land should be valued at its current market price (SNA 2008 paragraph 13.16, ESA 2010 paragraph
7.33). . . When market prices for transactions are not observable, valuation according to market-price-equivalents
provides an approximation to market prices. For example, if the market price of a certain piece of land is not available,
prices of land with a comparable use and location could be used” (p. 25).

24Note, even if there were unobservables here, like the fact that these properties may have different numbers of
bathrooms or quality of flooring, the observable variation is sufficient to explain 100% of the variation in prices. This
can occur if the unobservables are identical and highly/perfectly correlated with observables, or if the unobservables’
marginal values are insignificant. We return to this idea of correlated unobserved heterogeneity in our discussion of
kmeans clustering below.

25In addition to Wentland et al. (2020) and Kuminoff and Pope (2013) mentioned above, there are a number of other
instructive hedonic studies, including but not limited to: Gong et al. (2018), Burnett-Isaacs et al. (2020), Rambaldi
et al. (2015), and Diewert et al. (2015).



is generally less intricate than more advanced techniques used by Zillow’s proprietary automated valuation

model, for example, or our ML variant. For residential properties we first estimate the following for each

time period (3 year overlapping window) and state separately:

log(P ) = α + Xβ + Dγ + Dxζ + Qλ + ϵ (2)

where P is an N × 1 vector of observed market prices, X is an N × K matrix of characteristics which are

pertinent to the development of P (e.g., number of bedrooms, bathrooms, garages, square footage of the

living area, acreage, whether the structure has a basement, porch, etc.), D is an N × J indicator matrix where

D = 1 if i ∈ j and 0 otherwise where j indexes the location (e.g., census tract), Dx is a set of interaction

terms where both square footage and acreage of the parcel have been interacted with the location indicator,

and finally Q is an N × T indicator matrix where Q = 1 if i ∈ t and 0 otherwise.26

We interact the location fixed effects with structure square footage and logged acreage, respectively. For

practical reasons, we initially use census tract fixed effects, although we obtained similar estimates using finer-

level geographic fixed effects like census block groups.27 Although this approach is intensive for processing,

it allows the valuation of structure square footage and acreage to vary by a finer geography than typically

available. This is key, as the valuation of these attributes can vary widely across areas within a state (either

for demand-side reasons OR supply-side reasons due to regional variation in construction markets as described

by Somerville (1999) and Gyourko and Saiz (2006), among others. For example, an additional tenth of an

acre for a property in San Francisco, will be valued much differently than the same amount of space in

Sacramento, which this model with interactions allows for the acreage coefficient to differ by location.28

For the ONS model, we simplify the hedonic model to constrain it to a narrower set of covariates found in

the U.K. HPI model, which include: total rooms, total bedrooms, a binary measure of age (new/old), local

socioeconomic indicators,29 and fixed effects covering zip code, land use code, and year. While the data in
26The Zillow ZTRAX dataset contains quite a bit more information about individual properties that would help

with valuation, but we chose the variables with extensive coverage across all states in the dataset. When compared to
a fuller model that includes many more home characteristics than we end up using in individual states, the marginal
gain in precision was small compared to the potential loss in observations due to missing data in states/localities
that do not regularly report certain variables. In some cases, where a key variable like the structure’s square footage
is not reported widely in a particular state or municipality, we ran the regression without this variable separately.
When data becomes more universally complete across states and regions, we see no reason not to expand the model to
include it. However, we leave extensions to this model that exploit more variables to future work.

27Smaller geographic units, like block groups and blocks, have fewer sales, so the advantages of finer location controls
need to be balanced with thinness of sales within these areas (which can create some noisiness in the estimates). The
interactions also become problematic for estimation of too many fixed effects in most statistical software packages. We
have also explored a variety of other specifications to improve model fit and predictions, including a linear dependent
variable, where sale price is not logged.

28This interactive fixed effect approach is commonly used in the hedonic valuation literature for housing and land
(e.g., Kuminoff and Pope (2013) and Wentland et al. (2020)). As we discuss in more detail below, we require a
minimum number of transactions to occur within a location (e.g., tract) over a given period, pooling observations that
do not meet this threshold at a higher geographic level (e.g., county) in a separate regression.

29The socioeconomic indicators used in the U.K. model are somewhat U.K.-specific, so we used available local
characteristics in the U.S. as a close proxy: we have replaced it with measures of affluence from the Socioeconomic
Status and Demographic Characteristics of Zip Code Tabulation Areas. See https://www.openicpsr.org/openicpsr/
project/120462/version/V1/view for more information.

https://www.openicpsr.org/openicpsr/project/120462/version/V1/view
https://www.openicpsr.org/openicpsr/project/120462/version/V1/view


the ZTRAX dataset does not exactly align with the U.K. model, we view this as a close approximation of

how their model would perform in the U.S. if the data aligned more precisely. One might also think of it as a

coarser hedonic model than in Wentland et al. (2020), but one that is still well-aligned with prior literature

employing hedonic methods for this purpose.

Within each state and period, we then used these coefficients to compute a land price prediction for each

property in each year, using each three-year overlapping window. Our model generates a total price prediction

for each individual property based on its characteristics. We used the value of the property’s location and

acreage to obtain the underlying nominal land value of each property, based on the following calculation:

l̃v = expα+Dγ̂+Dx,acreageζ̂+Qλ̂ × exp.5ν2
(3)

where l̃v is a parcel level land value prediction, and ν is the root-mean-square-error of the in-sample fit

for the regression outlined in equation 2. Because we used relatively fine (spatially small) location fixed

effects, all time-invariant local amenities and environmental benefits within each tract (and within the period

of estimation) will be incorporated into the tract coefficients valuing location. Thus, each land value we

estimated for each property will account for net market value of location-specific amenities (to the extent

they are capitalized here).

Due to the nature of the data, several issues arise with the hedonic model that prompt ad hoc decisions

to rectify. One issue in the hedonic estimation of land value is that the tails of the distribution can often

produce extreme values, particularly when there are thin cells (i.e., states and years with land-use categories

having few sales and some extreme sales), from which the model generates a (semi-log) linear prediction. To

avoid making predictions for thin cells, like Davis et al. (2021), we establish a threshold under which we do

not allow observations to be modeled using that fine-grained of a fixed effect. Specifically, we specified that a

given tract have over 30 sales in the three year window for each model. If this condition was not met within a

given tract and period, we estimated models for the remaining census tracts using higher-level county (FIPS)

level geographic fixed effects.30 Moreover, one reason why we use a three-year running window is that a single

year of data will often yield noisier prediction results for hedonic models using fine fixed-effects, making this

threshold of N a more binding constraint for more of the dataset.

Because there may be noisy predictions for areas with sales marginally above these thresholds, we cull

any outliers below the 1st percentile or above the 99th percentile. These adjustments ensured that model

coefficients were not driven by erroneous or mis-measured data, small samples, or outliers.31 Nonetheless,

30We lump all remaining counties together under one location fixed effect that do not have enough sales (after
removing all census tracts that met the sales threshold) within the time period.

31One potential issue with the hedonic approach, or any prediction-based multivariate method, is multicollinearity.
The acreage of a property could be highly correlated with the size of the structure (square footage), particularly for
land in dense urban areas. This may produce bias or imprecise estimates of land value if there is a mechanical relation



a key takeaway from how we deal with these problems, the thin cell problem and outlier problems, should

be that we (and many others), if we are to be transparent about our method and design choices, must

communicate a lengthy description of the nuances and arbitrary thresholds to run these models and get

reliable, reasonable results. We return to this point as a potential problem that data-driven methods like

machine learning can help solve in less arbitrary, more systematic ways.32

2.4 Extending the hedonic model beyond single-family residential

Due to the relatively smaller number of sales for non-SFR properties, we take a few deviations from the

approach described above when we extend the hedonic model to other residential, commercial, industrial, and

agricultural properties. We thus estimated the models separately by census division (i.e., a group of states)

rather than a single state and used a five year rather than three year window. This allows the coefficient

estimates of the property characteristics to be derived from more data in order to reduce the influence of

outliers. We also specified the regression to just use census tract location fixed effects (or county if tract

is missing) rather than the two separate models (census tract or county) as we used for SFR properties.

The non-SFR residential properties use the same hedonic controls as the SFR, while the commercial and

industrial regressions are limited to only age, square footage (interacted with location), and logged acreage

(interacted with location) due to the limited number of relevant characteristics available in our data.33 The

agricultural land models are estimated using county fixed effects and include square footage, logged acreage,

and an indicator for a structure, which is also estimated using the entire Census Division. We return to a

discussion of the data limitations for these land use types at the end of the paper.

3 Data description

This section describes the property-specific micro-data we use to generate national estimates from millions of

data points spanning much of the U.S., along with a number of choices made to clean or restrict the data

for producing higher quality estimates. Specifically, we use the Zillow Transaction and Assessment Dataset

(ZTRAX) that was made available to researchers in academia and government for a limited period of time

(through September 2023).34 It contains market transaction data as well as a large set of individual property

between these two variables such that value is not meaningfully separable. We examined the correlations between
acreage and square footage of the structure in our data in untabulated analysis. Somewhat surprisingly, we found the
correlation was not particularly high in the U.S. (usually falling within 0.2-0.4).

32For out-of-sample tests comparing predicted prices to actual prices, we use only 80% of the sample, by census
tract, and hold out a random selection of 20%. We return to this point below in our discussion of the out-of-sample
tests.

33There is a small, but growing literature on valuation of commercial land and developing price indices for non-SFR
properties like condominiums/apartments, which draw from data sources with different (and in some cases a richer set
of) property characteristics for these land-use types or take an alternative empirical approach. For recent examples,
see Nichols et al. (2013); Diewert and Shimizu (2015); Diewert et al. (2015); Diewert and Shimizu (2017a,b) and
Burnett-Isaacs et al. (2020).

34As we discuss further in Section 7 below, there are a number of limitation to this dataset, and some of them are
straightforward to remedy. Our employer has purchased data from another data provider, Black Knight, that will



characteristics for sales recorded in local tax assessor’s data.35 Coverage is generally representative of the

United States’ national market, initially comprising 374 million detailed transaction records across more than

2,750 counties (i.e., 91.5% of U.S. counties). Not all U.S. states require disclosure of sale prices, so while

our data cover a large portion of the country, the price data in particular have some limitations in coverage,

specifically for 13 (mostly rural) states.36 The data include detailed information on each individual home’s

sale price, sale date, mortgage information, foreclosure status, and other information commonly disclosed by

a local tax assessor’s office for each real estate transaction.

Figure 1: ZTRAX Sale Price Coverage in the Continental U.S.

Note: Some states do not require public disclosure of sale prices, resulting in missing price data.

We join each transaction to each property’s characteristics into a single dataset to be used for our analysis,

so that each transaction has the corresponding property characteristic data from the assessment dataset. The

assessment data include a number of characteristics found on Zillow’s website or a local tax assessor’s office

describing a property: the size of the structure on the property (in square feet), lot size (in acres), number of

allow us to extend this analysis beyond ZTRAX’s current discontinuation date in 2023. Long term availability of
national microdata is important for replicating this method in the future.

35Data are provided by Zillow through the Zillow Transaction and Assessment Dataset (ZTRAX). More information
on accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions do not reflect the
position of Zillow Group. Non-proprietary code used to generate the results for this paper is available upon request to
the authors.

36Because some states do not require mandatory disclosure of the sale price, we currently do not have price data for
the following states: Idaho, Indiana, Kansas, Mississippi, Montana, New Mexico, North Dakota, South Dakota, Texas,
Utah, and Wyoming. In addition, some states like Louisiana, Maine, and Vermont have price data but are missing
substantial data in the ZTRAX vintage we use for this study. We omit these states as well. However, our employer
has recently purchased supplemental data from Black Knight that contains sale prices and other relevant information
for property transactions in all of these states, which we may use for filling these data gaps.

http://www.zillow.com/ztrax


rooms, bedrooms and bathrooms, year built, and various other characteristics.37 A key aspect of this dataset

is that it contains detailed information about each property’s location (address and latitude-longitude) such

that this fine-level spatial data can be linked to any level of geography commonly used in hedonic property

analysis.

The dataset from Zillow comes in a somewhat raw form. We therefore scrutinized missing data and extreme

values as part of our initial culling of outliers and general cleaning. Some outliers may arise because they are

either foreclosures or non-arm’s length transactions (which we omit using variables such as the document type

to identify these transactions), but others are typos in the source data (e.g., where a municipality records the

number of bathrooms as 40), or the property itself is unusual enough that it would not be an appropriate fit

for a model (e.g., if the home did, in fact, have 40 bathrooms, it is unlikely that each bathroom is valued in

the same way as other, more typical properties). Or, this might signal a misclassification of a property, where

a building with 40 bathrooms may actually be a commercial office building. Hence, we dropped extreme

values for price and home characteristics for our estimates, which is a common practice for recent research

using this particular data.38

We also culled the regression samples to limit the influence of outliers on the coefficients. We retain properties

with acreage above zero and below 5,000 acres. We use land use codes and acreage to classify properties

into the land types based on detailed land-use codes as described in Wentland et al. (2020): dense urban,

urban, single-family, rural, commercial, industrial, and agricultural. We initially removed properties that had

extreme values in absolute terms, like a structure smaller than 50 square feet (agricultural land does not use

this constraint) and a price lower than $1,000 or above $30 million. We then culled by price at the 2.5th and

97.5th percentile by year, land group, and county. We culled homes with square footage (a home’s living

area) below 2.5th or above the 97.5th percentile and year built (we use year built – median year built so that

the intercept is for a home built in the median year) below the 2.5th percentile. Homes were also winsorized

using total rooms at 11, bedrooms at five, bathrooms at four, and number of floors at three, thus confining

the influence of outliers in our hedonic model. We remove from our model any indicators for the presence of

a porch, basement, and garage if less than 5 percent or more than 95 percent of properties in the land-use

type and period had the amenity (we use 1 and 99 percent for presence of a pool). We remove variables if

more than 75 percent of properties in the land-use type and period were missing and recode to the average if

less than 5 percent were missing. Lastly, we remove from our sample any properties (aside from agricultural)

that do not provide some form of structure size (either square footage, bedrooms and bathrooms, or total

number of rooms). While the Zillow dataset contains a vast number of property characteristics, we primarily

37Zillow’s ZTRAX data contain separate transaction files by state, where all transactions need to be linked to
corresponding assessment records. With guidance from Zillow, we were able to merge the bulk of the data, but not
without some data loss (which figures into the size of our final sample).

38See Nolte et al. (2021) for a broad discussion of best practices using the Zillow ZTRAX data, which cites some of
our prior work using this data (e.g., Gindelsky et al. (2019)). This is a very useful guide to using the Zillow data; and,
while some of the precise thresholds and cutoffs may differ, we follow many of the general suggestions of this paper
makes.



relied on the variables above, which have the most coverage nationally to limit how much data we discarded

in our initial analysis. We limited the sample years to 2002 through 2015, as data for those years are most

complete for the vast majority of the states in our sample. One novelty of this time period is that it offers

great variation in time-series dynamics, as it includes intense periods of boom, bust, and recovery in the U.S.

real estate market.

Finally, given that we will be comparing methods in out-of-sample tests, we split our data into an 80%

training sample and a 20% test sample. This split is stratified by census tract to ensure that no census tract is

left out of either sample by chance. Overall, our training set includes 26,415,128 observations over the sample

period while the test set contains 6,608,198 observations. It is important to note that the training sample

is used by all model structures (e.g., our hedonic model, the ONS model, etc.) to estimate the necessary

parameters and performance is judged based on price predictions for the test set via an appropriate loss

function (e.g., root-mean-square error, mean-absolute-error, etc.). Summary statistics for the training, test,

and assessment set are outlined in Table 1.

4 Methodology - Adapting ML for Hedonic Valuation

4.1 Unobserved heterogeneity, kmeans clustering, and the appraiser’s problem

The hedonic valuation of land begins with predicting the overall price of the property from its components

(land + structure). By breaking down the price of a property into its individual components, we can evaluate

the impact of marginal changes to the property (e.g. adding a bathroom) and ultimately back out the

price of the property without its structure components based on variation in market prices and property

characteristics, as discussed above. Hence, given that the hedonic method begins with a prediction model, our

initial motivation for exploring an ML method is to evaluate whether we can gain new insights into valuing

land for each property by making more accurate predictions with a method more tailored for prediction

accuracy (i.e, measuring accuracy using a loss function such as root-mean-squared-error or root-mean-absolute

error). Moreover, in order to avoid what is often called the "black box critique" of ML methods, our goal

across the proceeding three subsections is to describe our methodology and the underlying mechanisms

in sufficient depth so as to allow for both replicability (along with our final code to be made public upon

publication) and facilitate feedback for further improvement/refinement of the approach.

An important concern about this approach, however, is that the data describing the property may not be

exhaustive and there could be relevant unobserved differences in properties that buyers/sellers can observe

but we as modelers/appraisers cannot. That is, we have a rich data set of observable characteristics for each

property (square footage, number of stories, acreage, etc.), but there is a great deal that we do not observe

about the property. Does the home in question have a high-quality roof, or one in need of repair? Does the

home have updated appliances? A more modern floor plan or architectural style? High-quality flooring or



Table 1: ZTRAX Summary Statistics - Single-Family Residential
Variables 1st Qu. Median Mean 3rd Qu. St. Dev.

Assessment Set

Acreage 0.2 0.2 0.4 0.5 0.40
Square Footage 1256 1680 1923.8 2345 925.80

45,516,219 Observations

Total Rooms 0 6 4.5 6.7 3.20
Total Bedrooms 3 3 2.8 3.2 1.20
Total Baths 1 2 1.9 2.4 0.80
Number of Stories 1 1 1.3 2 0.50
Porch 0 0 0.3 1 0.50
Basement 0 0 0.2 0 0.40
Year Built 1952 1971 1968.7 1993 29.30

Sales Training Set

Price 114,000 190,000 246,101.5 313,491.5 391,543.60
Acreage 0.1 0.2 0.3 0.3 0.40

26,415,128 Observations

Square Footage 1306 1740 1961.3 2398 896.30
Total Rooms 0 6 4.5 6.6 3.20
Total Bedrooms 3 3 2.8 3.4 1.20
Total Baths 1.5 2 2 2.5 0.80
Number of Stories 1 1 1.3 2 0.50
Porch 0 0 0.3 1 0.50
Basement 0 0 0.2 0 0.40
Year Built 1956 1981 1975.6 2002 29.30

Sales Test Set

Price 114,000 190,000 245,962.3 313,500 356,691.30
Acreage 0.1 0.2 0.3 0.3 0.40

6,608,198 Observations

Square Footage 1307 1741 1962.1 2400 896.60
Total Rooms 0 6 4.5 6.6 3.20
Total Bedrooms 3 3 2.8 3.4 1.20
Total Baths 1.5 2 2 2.5 0.80
Number of Stories 1 1 1.3 2 0.50
Porch 0 0 0.3 1 0.50
Basement 0 0 0.2 0 0.40
Year Built 1956 1981 1975.6 2002 29.30

Vacant Land Transactions Price 15,000 42,500 120,590 134,900 205,777.30
1,035,517 Observations Acreage 0.23 0.33 0.59 0.91 0.54

Note: The data available for this project initially covers thirty-six of forty-eight states in the continental United
States. The transactions we use occur between 2002 and 2016 and account for more than 8, 000, 000, 000, 000 in market
value. The average number of transactions per year is just over 2.1 million. The Assessment data is a snapshot of all
single family houses between 2014 and 2016.The sales test set was created by sampling randomly without replacement
20%,by census tract, of the overall sales transactions.

windows? The answers to these are often not available to modelers (although, the data continue to improve

over time) and many professional appraisers. This is a fundamental problem for appraisers, particularly

for "drive-by appraisals" or summary appraisal where the appraiser does not enter the home and evaluates

comparable properties using a Sales Comparison Approach.39 The information available to them is often far

more limited than the information available to the actual buyers and sellers setting market prices, given that

a host of unobservables likely play a role in negotiations and price-setting in property markets.

39Regulations on the time period of recent sales and what constitutes a “comparable sale” vary by state, lender,
and over time. Typically, the time period contains a one-year look back and mandatory justifications if comparable
characteristics are not available. Fannie Mae offers a detailed introduction to the Sales Comparison Approach
appraisals in their Selling Guide (p. 596-601).

https://singlefamily.fanniemae.com/media/33041/display


To address this unobserved heterogeneity problem, we employ a similar two-step group fixed-effects process

to Bonhomme et al. (2022), which addresses an analogous issue of unobservables associated with individuals

in the labor market. Their paper uses a kmeans algorithm as a classification step to group individuals in the

labor market whose latent types, which need not be discrete, are most similar. Similarly, our assumption

(and implicitly the assumption of appraisers using comps as the primary basis for valuation) is that homes

with similar observables have a stable distribution of unobservables within a given group - mirroring the logic

of Bonhomme et al. (2022). For example, four bedroom homes with more than two bathrooms are likely

to have a similar distribution of unobservables, which differ from two bedroom, one bathroom homes. Just

as Bonhomme et al. (2022) used group classifications as fixed effects in subsequent models to account for

unobserved heterogeneity across individuals, we group properties by relevant observables in the assessment

set, using these in lieu of geographic-based fixed effects.

In a way, the two-step group fixed-effects method also mirrors the way in which appraisers evaluate nearby

sales of comparable properties by grouping along relevant observables. For example, if the subject house

is a four-bedroom, three-bathroom house with a two-car garage sitting on a quarter of an acre of land, an

appraiser will identify similar nearby properties that have sold in the recent past and correct for differences

among both observables and unobservables (to our data set). While an appraiser will attempt to stay within

the same neighborhood and school district, often because this is a large driver of home prices, there is no

guarantee that sufficient nearby sales exist. Additionally, there is no guarantee that the appraisal process

will respect other geographic boundaries used my modelers to proxy for location such as census tracts or

block-groups, either. 40

To provide context we have included an [abbreviated] appraisal report from a local brokerage in Maryland in

Figure A the online appendix. Note that, along observable dimensions (to our data) such as square footage,

number of bedrooms, and number of bathrooms the three comparable properties are largely similar to the

subject home. However, there is heterogeneity in other characteristics such as the quality of construction,

the presence of a fence around the the property line, and level of finish in below grade (e.g., basement)

floors. Moreover, in this example, while two of the properties are nearby, less than 0.35 miles, the third

comparable is over two miles away; and, two out of the three comparables are in a different location with

respect to the geopolitical boundary. By using the kmeans algorithm to group structures based on the

observable characteristics we are essentially allowing these fixed effects to act as an appraiser grouping

comps on observables, albeit with a substantially larger set of comparables and a more systematic approach.

Like Bonhomme et al. (2022), the appraiser is assuming this process discretizes the remaining unobservable

heterogeneity by creating relatively homogeneous set of houses along observable dimensions.

40For example, Fannie Mae’s (2022) Selling Guide describes this comps process in some detail on p. 598-601 of the
Guide.

https://singlefamily.fanniemae.com/media/33041/display


Thus, we cluster the assessment data in ZTRAX, which includes the near universe of properties, over a

multi-dimensional space that includes the following characteristics: location (latitude/longitude), number

of bedrooms, number of bathrooms, total rooms, the presence of a porch and/or basement, the presence

of a garage, the number of stories in the structure, and the year the structure was built. This means that,

within a given cluster, we are minimizing the variance of the properties over these dimensions. Each cluster

represents the universe of houses within a state that an appraiser would consider “comparable” to a subject

home. We then apply these time-invariant clusters from the housing stock to those houses that transacted on

the market. Returning to the unobserved heterogeneity, this process also then assumes that the distribution

of unobserved characteristics is relatively stable within the cluster and thus the influence of that heterogeneity

on our predictions will be minimized.

Table 2: Distribution of Within Cluster versus Within Tract Standard Deviations: Ohio Example
Minimum First Quartile Median Mean Third Quartile Max

Generated Clusters

Sales Price (Sales) 29,053 42,518 52,993 61,832 75,187 229,704
Square Footage 160.10 326.90 407.60 424.20 511.90 769.40
Acreage 0.129 0.383 0.464 0.454 0.529 0.722
Bedrooms 0.000 0.139 0.224 0.258 0.393 0.762
Bathrooms 0.000 0.202 0.285 0.297 0.401 0.808

Census Tract

Sales Price (Sales) 4,734 32,825 43,512 50,556 58,743 582,193
Square Footage 40.31 378.33 479.64 479.85 569.97 1058.54
Acreage 0.002 0.100 0.248 0.298 0.492 0.918
Bedrooms 0.000 0.596 0.658 0.655 0.719 1.528
Bathrooms 0.000 0.435 0.549 0.542 0..638 1.226

Note: The values above represent a single state (Ohio) to illustrate the reduction in within cluster variation over
observable hedonic elements. In Ohio there are 370 clusters with an average of 7,142 (5,821) homes per cluster. There
are 2,947 census tracts in Ohio, each of which as an average of 913 (852) homes. Each cluster can be thought of as a
set of comparables that could be used by an appraiser to establish market value.

Much like Bonhomme et al. (2022), which used this process as a dimensionality reduction device, this process

reduces the dimensionality of our price prediction problem. Within a single cluster, this process generates a

more homogeneous set of homes along the clustering variables. Note that we do not include square footage or

acreage in the clustering algorithm and, as a result, the majority of within cluster price variation is loaded on

to these other continuous variables of interest. To be plainer, if all houses within a cluster have the same

observable characteristics and a stable, mean zero set of unobservable characteristics, then price variation

within cluster comes from the size of the plot (acreage) and the size of the structure (square footage) as well

as any location effects. In Ohio, for example, the average standard deviation on the number of bedrooms

within our kmeans constructed clusters is less than 40% of that of the within cluster standard deviation

of census tracts (0.393 versus 0.655), which we show in Table 2. The maximum standard deviation in our

constructed clusters is less than half that of census tracts. Meanwhile, the size of the clusters is significantly

larger than a tract with an average of 7,142 (5,821) homes per cluster as compared to an average tract size of

913 (852) homes. This reduction varies across states with some states such as California having as little as

10% of the within cluster variation as compared to that of the census tracts.



Figure 2: Clustering and Boundaries: An Example

(a) (b)

(c) (d)

Note: To illustrate the clustering we have plotted a sample of single family residences in Hamilton County Ohio
(Figure 2a). In Figure 2b we pick a single tract within that county which represents the suburb of Wyoming and plot
all single family residences in the tract color coded by cluster assignment. Figure 2c isolates two clusters in that area
showing how clusters can cross geo-political boundaries such as census tracts. Finally, Figure 2d is a satellite image of
that census tract showing the borders are created by artificial landmarks (roads) which may or may not make sense as
a delineation in a fixed effect hedonic type model.

Finally, Figure 2 illustrates how these clusters can cross the common geospatial boundaries used in the

hedonic real estate and urban economics literature. In Figure 2a we show a sample of the properties in

Hamilton County Ohio (the location of Cincinnati, Ohio) color coded by cluster. In Figure 2b we have

isolated a single census tract in the suburb Wyoming. Every property is accounted for, and each is assigned a

cluster which is similarly color coded. In Figure 2c we have that same census tract but isolating down to

two individual clusters to show how they can cross the tract boundaries. We call your attention to Figure

2d which shows that the eastern boundary of the census tract from Figure 2b is a road, and our clustering

algorithm allows for houses on one side of that road to be compared to the other; something an appraiser

would almost certainly do, but could be obscured by the use of tract fixed effects.

4.2 Gradient boosted trees (GBT) paired with kmeans clustering - a new approach

Following Bonhomme et al. (2022), we use these data-driven fixed effects in a second stage estimation

step, employing a gradient boosted trees (GBT) modeling framework to estimate the price as accurately



as possible. Gradient boosting is a learning algorithm which combines individual weak learners [decision

trees] through iterative construction such that each subsequent tree attempts to correct the mistakes of its

predecessor. The gradient being evaluated depends on the loss function chosen given the context of the

modeling. In this case we have chosen the L2 loss function (least squares), 1
2 (yi − f(xi)2), with gradient,

−δ(yi, f(xi))/δ(f(xi) = yi − f(xi). In each iteration, a tree is built on a random sub-sample of the data and

this tree is of fixed depth. In our case we have chosen an interaction depth of four to limit the possibility of

overfitting for each individual tree. Note that, for each iteration, the target is not the sales price of each

individual home, but rather the residuals of the previous iteration. This differs from say a random forest

which builds a number of independent trees and then averages the predictions. The learning rate, or how big

of a step along the gradient, is limited for each tree to the default parameter of γ = .1. In Algorithm 1 we

have outlined the generic framework of a gradient tree boosting algorithm (Friedman et al., 2000; Friedman,

2001, 2002).

Algorithm 1 Gradient Boosting
Input:
Data, D = (X, Y ), and a differentiable loss function, L(y − i, F (x)).
Initialize model with a f0(x) = argmin

γ

∑N
i L(yi, γ)

1. For m = 1 to M :
(a) Compute rim = −

[
−δL(yi,F (xi))

δF (xi)

]
f=fm−1

(b) Fit a regression tree to the target rim giving terminal regions Rjm for j = 1, . . . , Jm.
(c) For j = 1, . . . , Jm compute γjm = argmin

γ

∑
xi∈Rjm L(yi, Fm−1(xi) + γ)

(d) Update fm(x) = fm−1(x) +
∑Jm

j=1 γjmI(x ∈ Rjm).
2. Output f̂(x) = fM (x).

For each state-year, we apply the gradient boosting algorithm above to the sales data with the estimating

equation:

salesprice = f(latitutde, longitude, sqft, acreage, cluster, yearbuilt). (4)

Our location effects in this case are latitude, longitude, cluster, and year built; where year built is both an

imperfect proxy for structure quality (depreciation) and potentially for the unobserved land amenities of

the property (i.e., the flip-side to the vacant land selection bias – land developed earlier, within a certain

geographic location/cluster, likely has more positive unobservable amenities and infrastructure than properties

built more recently in that area).

To account for properties that are not sold in a given period, we use the predictive model based on properties

that are sold to project onto the near universe of properties (which is called "assessment data" in ZTRAX, as

the underlying data comes from local assessors’ offices) for both the linear hedonic and GBT models. This set



of properties includes a large number of houses that are not typically observed on the market. This means we

predict the price of homes that are sold in a given period as well as homes that may never be on the market

based on these observable characteristics.

There are a couple of things we would like to highlight about this framework. First, as the tree splits along

the clustering variable, any subsequent splits produce within cluster terminal nodes. For example, suppose the

first split is along the cluster dimension, then any subsequent splits will be of houses that are homogeneous

along the observable characteristics and the terminal node variation on the structure price will come from the

square footage. Second, as the tree branches along latitude and longitude, post cluster split, it is dividing

this comparable set of structures into fine grids of geography, in some cases much finer than census tracts or

even blocks, in others (such as sparsely populated suburban areas) the geography may be larger than census

tracts or even counties. The terminal nodes produced are relatively homogeneous structures that vary in size

within a small geographic region, albeit a region which is ultimately rectangular.

Finally, similar to the hedonic approach, we treat the plot “as if vacant" by reducing the square footage

of the structure to zero for the purposes of valuing the market value of the land. To do this, our trained

model predicts the new price if the structure characteristic (sqft) is zeroed out. Since tree based algorithms

do not differentiate between sqft = 0 and sqft ≤ 500 we make a small correction to the structure price by

predicting the change in price from increasing every property’s square footage by the smallest in its cluster.

The difference between this new, larger structure prediction and our original price prediction forms our within

cluster correction term. The end result is our prediction of the land value and it can be written as:

lvi,t = P̃i,t|sqft=0 − γc,t (5)

γc,t = P̃i,t|sqft=sqfti+min(sqftc,t
) − P̃i,t|sqft=sqfti

,

where lvi,t is the land value for property i in time t, P̃i,t|sqft=0 is the predicted price of property i in time t

conditional upon the structure’s square footage being reduced to zero, and γc,t is the correction term applied

to each i ∈ c.

To calculate the price-per-acre at a property-level, we divide the estimated land value, lvi,t by the observed

acreage for the property. For a property with land value of 10, 000 that sits on 0.25 acres of land this would

imply a price-per-acre of 10, 000$/0.25acres = 40, 000 dollars per acre. We do this at an individual level so

that we can then aggregate to any geographic level, j, by calculating ppaj =
∑n

i∈j lvi/
∑n

i∈j acreagei. 41

41Note that this measure of price-per-acre is one possible value measure and is different than say the average
price-per acre which would be calculated as ¯ppaj = n−1

i∈j

∑n

i∈j
ppai. The first is the price-per-acre of properties in the

jth region weighted by their relative importance (e.g., smaller more expensive plots of land are more valuable than
larger, cheaper land) whereas the second is the price-per-acre of the average plot in the jth region.



4.3 Improvement in Price Prediction and the Case for Model Stacking

Recall that our raison d’être for the approaches described above is developing an “as if vacant" market value

estimate for land underneath privately owned structures, as granular micro data and new methods should

produce better valuations. It then begs a number of (answerable empirical) questions. First, how much better

are the price predictions using this micro data? Second, how much better are the price predictions when we

deviate from a traditional hedonic analysis and move to the two-staged machine learning structure outlined

in the previous section? And third, if there are circumstances where one is better than the other, can we

cultivate a composite approach via model stacking that predicts prices even better? We answer all three of

these questions in this subsection, motivating the final method used to derive our bottomline results in the

next section.

As we mentioned in the introduction, in 2022, the Office of National Statistics (ONS), the national statistical

office of the United Kingdom, released new estimates of the land underlying buildings and structures.42 For

brevity, we will not cover the full model here, but simply note that the key differences are twofold:

1. The data being used is less detailed than that available in the Ztrax data set. For example the

structure characteristics are limited to number of rooms, type of dwelling, a binary indicator of

dwelling age (old/new), and an indicator if the buyer is a first time buyer or former owner occupier.

Like our hedonic model the model used to produce these land estimates includes location (at the

county or London borough level) and property use (e.g. fixed effects).

2. To supplement this, the ONS model includes socioeconomic indicators (known as ACORN) which

are likely correlated to unobserved structure characteristics such as number of bedrooms, bathrooms,

etc. Moreover, they interact this indicator with the dwelling type and first time buyer indicators.

In an effort to contextualize the improvement in price predictions, both from the richer micro data available

through Ztrax and a progressively more adaptable modeling structure, we approximate the ONS model on

our data and compare the out-of-sample price predictions across each model (ONS, our linear hedonic model,

and the ML supported model).43 In Figure 3 we show the distribution, by state, of mean-absolute-error ratios

for each model. Specifically, we calculate these ratios as:

MAEa

MAEb
=

∑n∈test
i,a |p̃i,a − pi|∑n∈test
i,b |p̃i,b − pi|

, (6)

42See https://www.ons.gov.uk/economy/nationalaccounts/uksectoraccounts/articles/
improvingestimatesoflandunderlyingotherbuildingsandstructuresinthenationalbalancesheetuk/2022 for
a full accounting of the ONS methodology and release information.

43While the ACORN measure of neighborhood status has no analogue in the US statistics we have replaced it instead
with measures of affluence from the Socioeconomic Status and Demographic Characteristics of Zip Code Tabulation
Areas. See https://www.openicpsr.org/openicpsr/project/120462/version/V1/view for more information.

https://www.ons.gov.uk/economy/nationalaccounts/uksectoraccounts/articles/improvingestimatesoflandunderlyingotherbuildingsandstructuresinthenationalbalancesheetuk/2022
https://www.ons.gov.uk/economy/nationalaccounts/uksectoraccounts/articles/improvingestimatesoflandunderlyingotherbuildingsandstructuresinthenationalbalancesheetuk/2022
https://www.openicpsr.org/openicpsr/project/120462/version/V1/view


where p̃i,a is the predicted price for the ith observation for model a for each state in the ZTRAX dataset for

which we have sale price data. A value of less one here indicates that model a has lower MAE, out-of-sample,

than that of model b. For example, in Figure 3a model a is the hedonic model we specified earlier in Section

2.3, and model b is the approximation of the specification used by ONS.

The results in Panel (a) of Figure 3 show the mean-absolute-error distributions by state over the 2004-2016

range are lower for the hedonic model we propose than the simpler ONS model, indicating that a richer

data set and a more granular level of fixed-effects with appropriate interactions is likely a better predictor of

overall price. There are exceptions within each state as some years may favor the ONS version of the model

over that we have proposed and in a state such as South Dakota, where sales are thin and the data is very

limited a coarser model (ONS) can perform better. Moving over to Panel (b), we see further improvement

with all state-year distributions favoring the combination of data driven clustering and gradient boosted trees

over the (approximate) ONS model across the board. However, the results from Panel (c) comparing our

hedonic with GBT shows that for some states (like California) and state-year combinations (New Jersey,

Ohio, and Connecticut for example) the more granular hedonic model can out-perform our machine learning

approach in out-of-sample price prediction accuracy in some circumstances. The potential reasons for this

are manifold. For example, in some states neighborhoods and census tracts are more homogeneous than

others, limiting the value-added of kmeans clustering. Recall that we noted above California census tracts

are more homogeneous across observable characteristics, as clusters there only showed a modest reduction in

variance over observables. Further, being a relatively large volume market, the richness of the California sales

data likely contributes to the performance of the linear hedonic method. While we leave further investigation

of these differences to future research, the main takeaway from this comparison is that more granular data

opens the door for improved performance of linear hedonic methods and the GBT method provides enhanced

predictive accuracy in most (but not all) state-year combinations.



Figure 3: Mean Absolute Error Comparison: Distribution by State from 2004-2015

(a) Linear Hedonic Model versus ONS Model (b) Gradient Boosted Trees versus ONS Model

(c) Gradient Boosted Trees versus Linear Hedonic
Model

Note: All comparisons are made using the out-of-sample transaction set which is 20% of the sales sample by census
tract. To construct these plots we take the ratio of Mean Absolute Errors for each model and plot the resulting
distribution across years for each state. For example, in Panel 3a, we have divided the out-of-sample MAE of the
proposed linear hedonic model by the model put forth by the U.K. Office of National Statistics. A value less than one
indicates that the MAE of the linear hedonic model contained herein is lower than that of the model proposed by
ONS.

Although GBT outperforms all other models in price predictions in the vast majority of circumstances,

there is still some ambiguity in which model we should prefer for a unified method estimating land value

for the entire country. We thus draw on a rich literature surrounding forecast averaging (see Granger and

Ramanathan (1984), Elliott and Timmermann (2004), Timmermann (2006), and Hansen (2008) among many

others for examples), which argues that we do not need to choose a single model. In fact, since some state-year

prices have lower out-of-sample error when using the hedonic model, and (the majority of) others are better

predicted using our machine learning approach, the forecast averaging literature provides a straightforward

solution: combine the predictions in order to generate composite price and land value predictions weighted

in favor of the better model in each context. While there are many ways to combine forecasts – arithmetic

average, eigenvector weighting, and complete subset regression with information theoretic weighting, to name

a few – we have chosen one of the more straightforward ways to combine our forecasts, a simple regression.



We implement our forecast combination using the following equation:

pi,j,t = αj,t + β1p̃HD
i,j,t + β2p̃GBT

i,j,t (7)

where pi,j,t is the observed price for the ith observation in the jth state in the tth period from the 20% test

set, p̃HD
i,j,t is the price prediction for that same property by the hedonic model we outlined in Section 2, p̃GBT

i,j,t

is the price prediction for that same property by the machine learning model we outlined in Section 4, and

finally αj,t is a state-year specific bias correction term. It is important to note that these weights need not

sum to one, nor must they both be positive. Yet, the intuition is straightforward, as the composite value

gives greater weight to a given model prediction if that model predicts the sale price of the property in a

given state more accurately.

We have included in an online appendix (Figure B) a figure which outlines the distribution of weights and

the bias correction term by year for all states. The predictions put forth by the our GBT model are nearly

uniformly preferred by weight over those produced by the hedonic model though both distributions are

clearly different from zero. The bias terms tend to be negative overall which indicates that the predictions

we do tend to over-predict relative to the true value. These weights are also informative as the overall

mean-absolute-error, relative to the ONS model, is significantly less for the composite prediction compared to

either of our original models. Figure 4 we see that the ratio of mean-absolute-error between the composite

predictions and the ONS model is completely in favor of the composite for all state-year combinations.

Figure 4: Mean Absolute Error Comparison: Distribution by State from 2004-2015

(a) Composite Forecast versus ONS Model

Note: All comparisons are made using the out-of-sample transaction set. To construct these plots we take the ratio
of Mean Absolute Errors for each model and plot the resulting distribution across years for each state.

We then apply these weights to the land values directly by the following equation,

l̃v
comp

i,j,t = α̂j,t + β̂1 l̃v
HD

i,j,t + β̂2 l̃v
GBT

i,j,t , (8)



where the land values are calculated from equation 3 and 5 respectively. Our explicit assumption here is that

forecast error from the price is equally weighted between structural error and land error and thus the weights

are not different. This composite method is the default method for the results reported in the next section.

5 Results

One challenge with granular, property-level land value predictions is that we generate millions of results

over a decade-long sample, which can then be reported in countless ways. Thus, in this section, we proceed

by reporting a handful of tables and figures that are useful for illustrating national and regional trends for

2006-2015, but only scratches the surface of how this data can be reported. First, we begin by reporting

land value and leverage in Table 3 for single-family residential land underlying structures (labeled Suburban

Residential in subsequent tables), using the composite method combining GBT and hedonic methods described

in the previous section. This category is both the most valuable land in aggregate and, for comparison with

other studies, it is one of the most common types of land valued in the academic literature. Second, in

Tables 4 and 5, we provide price-per-acre estimates for the remaining residential categories (dense urban,

urban, and rural) as well as agricultural, commercial, and industrial land. Third, in Table 6, we provide

aggregates estimates of land value for the contiguous U.S. for all land groups, broken down by census division.

In the online appendix, we further break out the results by state-year combinations and the final results,

once published, will include further geographic disaggregations.44

5.1 Single-family residential (suburban) land value and land leverage results

Table 3 shows the price-per-acre and land leverage for single-family residential land from 2006 through

2015 across nine census divisions in the US. These results highlight tremendous variation both across and

within regions over time, conforming to the already well-established time-series dynamics that land value

experienced a bust following the 2006-07 highs in the real estate markets, bottoming out over the next few

years, and subsequently rebounding over the latter half of the sample period. While volatile over this period,

the Pacific region, for example, maintained the highest value for single-family residential land, averaging

nearly $850,000 per acre over this decade. The regions with the least expensive land value for single-family

residential property were in the South. Based on the predicted prices and land values leverage (i.e., the ratio

of land value to price), was anywhere between a low of 18% to a high of 71% during the decade with again,

the lowest leverage values appearing in the West South Central division while the highest leverage appeared

in the New England division.

44We use census divisions and regions defined by the Census Bureau in subsequent tables and figures for a variety of
reasons. Aesthetically, these aggregations can fit on a page in a single, relatively easy to read, table or figure. Given
that some states are missing sale price data, another benefit to using divisions and regions is that we can aggregate to
the national level if we assume that the missing states are reasonably represented in the division by the states we do
have in the ZTRAX data. We return to this limitation in the Discussion section below.



Table 3: Division Single Family Residences: Composite Values
Division 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Price-Per-Acre

New England 434,588 419,234 369,838 337,840 326,284 314,062 303,167 307,869 310,125 320,281
Middle Atlantic 364,889 358,524 333,303 306,809 292,496 263,358 253,027 252,038 256,660 265,617
East North Central 248,280 235,753 195,028 180,380 159,612 141,387 138,216 150,598 164,825 173,337
West North Central 232,791 229,238 195,179 184,856 173,290 171,461 180,573 183,412 198,405 *
South Atlantic 205,955 186,170 153,845 114,920 99,239 92,102 100,516 108,945 122,842 139,027
East South Central 60,523 58,054 51,751 52,870 78,011 94,258 90,055 93,358 98,028 *
West South Central 43,882 46,819 46,459 41,903 40,330 40,029 30,493 31,501 31,145 36,275
Mountain 447,296 419,146 348,187 268,319 280,345 269,931 289,090 323,258 365,238 420,114
Pacific 1,156,633 1,107,416 777,423 646,459 665,014 621,963 638,000 808,057 936,628 1,084,222

Leverage

New England 0.71 0.71 0.68 0.68 0.65 0.65 0.66 0.66 0.68 0.70
Middle Atlantic 0.49 0.49 0.49 0.48 0.47 0.44 0.43 0.41 0.40 0.40
East North Central 0.49 0.48 0.46 0.47 0.42 0.39 0.36 0.36 0.36 0.38
West North Central 0.49 0.50 0.42 0.43 0.40 0.43 0.44 0.43 0.43 *
South Atlantic 0.37 0.34 0.34 0.30 0.25 0.23 0.24 0.24 0.26 0.29
East South Central 0.30 0.28 0.24 0.26 0.44 0.58 0.54 0.54 0.54 *
West South Central 0.23 0.23 0.22 0.20 0.19 0.19 0.14 0.13 0.13 0.15
Mountain 0.42 0.41 0.41 0.36 0.39 0.39 0.39 0.38 0.39 0.42
Pacific 0.56 0.55 0.49 0.45 0.43 0.42 0.42 0.45 0.48 0.51

Note: Recall that price-per-acre is calculated as the sum of all land values in an area divided by the sum of all
acreage in that area in the assessment set. This is fundamentally a different centrality measure than the price-per-acre
of the average plot, though both are reasonable. Values for West North Central and East South Central in 2015 have
been suppressed due to data issues. Leverage is calculated by dividing the predicted land value by the predicted price
and averaging over the region. In this sense leverage is that of the average plot of land in the region. All dollars are
nominal.

In Figure 5 we collapse single family residences down to the four regions of the continental U.S. (as designated

by the U.S. Census Bureau) to illustrate the time-series dynamics across regions and three different models.

All models in all regions show procyclical movement in land prices, consistent with the notion that land

prices fluctuated directly with the demand shocks to the real estate markets over this period. Overall the

price-per-acre of the two-step kmeans-GBT method outlined in Section 4 shows lower overall land values

for all four divisions than the hedonic model. The composite value tends to be closer to the former rather

than the latter, though they are not equivalent. This hides some of the variation that would be seen between

states, as there are certainly states, such as California, where the composite value is almost perfectly in

between or even favoring the hedonic values overall.

One takeaway we gleaned from these regional comparisons (and state-by-state comparisons in the online

appendix) is that the ML method contained herein does “more with less". When a market has highly detailed

data and a swift flow of transactions, the hedonic model tends to do quite well predicting the price and thus

land value. In markets, either by state or land type, where the market is thinner, the ML model tends to

have fewer issues with extreme values and better processes heterogeneity among individual parcels.45

45We recognize that it is nearly impossible to provide results of parcel level land values aggregated to every geography
a reader might want to evaluate. Nonetheless, as part of this research, we are currently developing a "shiny app" that
will allow users to, on demand, aggregate the land values to numerous subnational levels of geography they prefer.
Moreover, this tool will allow for the user to examine a subset or even an individual state by county or census tract,
for example, and download the appropriate data. Note we do not plan to provide individual property values at this
time due to potential legal restrictions with the data; and, data limitations for some states, counties, tracts, etc. would
also prevent estimates for some subnational geographies. To be clear, the data repository we describe above would be
an extension of this research paper as experimental/developmental, and not an official statistical product of BEA. We
intend to make this available upon final publication of this paper.



Figure 5: Region Price-Per-Acre

(a) Midwest Region (b) North East Region

(c) South Region (d) West Region

Note: In each plot we have grouped the states according to their regional designation from the U.S. Census Bureau.
These are weighted by the number of homes in the assessment set so that larger states will have more influence in the
plot. Composite figures are computed by using by state-by-year weights from the observed sales price and predicted
prices from each model. Please note, y-axis scale is not common across each of the sub-figures.

In Table 4 we show our composite estimates for all residential land types by census division, as well as

agricultural land estimates by division. Recall that the primary difference in urban and dense urban (as

defined by the NLUD data we use) is that dense urban areas have smaller plots (<.1 acre), which dominate

sales of residential properties in dense cities. Not surprisingly, dense urban land is by far the most valuable

land in terms of price-per-acre, which can be as high as 4-5 million per acre in some divisions (New England

and Pacific), but only a million or less in other areas in the U.S. (like in the South). Urban land is substantially

cheaper, as it is predominantly sold on larger plots just outside the CBD of most cities (i.e., most often the

areas between "the suburbs" and "the city"), but its value generally falls between urban land and its suburban

SFR alternative. While their focus was only single-family residential property, a broader takeaway from

these results is that they conform to the general dynamic reported in Davis et al. (2021) and numerous other

studies that show a steep price gradient away from density. Moreover, rural residential property, which largely

consists of large parcels (>2.5 acres) and other rural land-use types (e.g., mobile/manufactured homes), is

the cheapest residential land type, conforming to this broader density story. But, it should be noted that

rural land is far closer in value to agricultural land than suburban SFR land, which is intuitive given the



location of rural and agricultural land more generally. In census divisions like New England, for example,

rural land is relatively expensive, given the density of the states is also relatively high; but, Table 4 also

shows agricultural land is similarly high due to its high opportunity cost of being converted into rural land.

We do not see quite the same degree of this dynamic in the Pacific division, however, likely due to different

density, and how much further away rural areas are from densely populated areas in the American West as

compared to the East Coast.

Table 4: Division Residential and Agricultural Price-Per-Acre: Composite Values
Division 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Dense Urban

New England 4,390,728 4,064,087 3,782,702 3,568,738 3,532,994 3,739,399 4,214,188 4,830,544 5,264,961 5,583,918
Middle Atlantic 3,514,665 3,347,908 3,183,585 2,937,404 2,957,134 2,887,010 2,715,331 2,814,853 2,871,901 2,829,367
East North Central 1,901,898 1,765,491 1,579,959 1,363,429 1,268,454 1,078,910 951,014 996,262 1,153,150 1,197,307
West North Central 1,342,927 1,300,216 1,306,655 1,059,317 1,013,786 788,484 765,985 800,619 981,398 949,944
South Atlantic 2,698,156 2,629,256 2,044,937 1,519,384 1,377,169 1,120,682 1,113,927 1,234,078 1,288,969 1,461,937
East South Central 1,204,170 1,191,990 1,036,609 1,026,781 992,264 939,277 867,551 900,278 964,688 969,555
West South Central 619,508 728,811 604,254 707,326 675,782 604,476 636,644 567,717 522,754 557,946
Mountain 1,709,801 1,317,103 1,059,386 541,712 523,359 482,635 704,046 1,069,966 1,215,946 1,618,904
Pacific 4,878,001 4,430,268 3,255,403 2,534,171 2,551,315 2,267,257 2,142,890 2,947,532 3,654,961 3,966,805

Urban

New England 895,796 822,416 691,209 588,353 560,019 523,496 550,734 629,823 670,927 690,115
Middle Atlantic 740,863 700,978 658,297 609,182 629,507 599,269 575,881 595,190 635,986 649,422
East North Central 299,072 242,486 215,176 203,054 196,448 178,757 153,682 157,982 187,219 210,601
West North Central 490,972 455,156 390,404 328,442 336,871 268,539 271,378 309,871 384,791 382,061
South Atlantic 637,606 587,715 429,748 239,477 209,601 198,877 232,715 257,590 292,301 353,634
East South Central 226,738 235,269 209,574 195,602 194,201 191,165 188,252 196,666 211,082 236,268
West South Central 252,046 234,162 202,337 214,566 215,406 165,504 194,971 228,901 282,243 262,876
Mountain 472,937 454,159 438,306 264,313 291,133 366,627 437,811 469,693 525,665 609,871
Pacific 967,605 868,165 640,102 490,939 471,143 446,159 431,577 539,841 722,674 732,325

Rural

New England 39,289 36,233 32,715 28,245 27,917 24,185 23,325 22,100 23,067 23,979
Middle Atlantic 9,488 9,242 8,545 7,875 7,945 7,406 6,681 8,282 9,049 8,114
East North Central 8,173 6,363 5,932 4,965 4,526 4,605 5,482 6,563 7,536 7,870
West North Central 6,906 6,955 6,959 5,579 5,557 5,438 5,196 4,980 6,673 6,180
South Atlantic 16,062 14,718 14,108 12,312 11,499 10,529 10,647 9,879 10,272 11,352
East South Central 2,054 2,056 2,037 2,041 2,052 2,000 2,018 2,018 2,148 2,230
West South Central 3,258 3,200 3,177 3,192 3,175 3,134 3,256 3,371 3,640 3,745
Mountain 22,490 22,654 21,362 17,875 17,011 15,323 15,428 16,343 18,128 19,517
Pacific 28,777 30,414 25,703 21,761 19,235 18,719 17,035 19,144 21,834 24,224

Agricultural

New England 13,782 11,749 12,285 13,592 10,694 10,483 11,663 3,679 15,367 25,770
Middle Atlantic 4,594 4,938 5,673 4,930 4,625 4,576 4,481 4,455 4,627 4,480
East North Central 5,093 5,031 4,976 4,787 4,921 5,023 5,479 5,796 5,996 6,272
West North Central 4,360 4,387 4,764 4,504 4,426 4,402 5,565 5,220 5,608 5,320
South Atlantic 8,778 8,218 6,413 5,169 4,894 4,351 4,009 3,971 4,400 5,152
East South Central 2,899 2,759 2,649 2,469 2,328 2,276 2,417 2,380 2,452 2,832
West South Central 1,887 2,047 1,805 1,352 1,553 1,909 2,365 2,654 3,188 3,087
Mountain 5,404 7,009 5,723 4,248 3,220 3,137 3,438 3,446 3,291 3,986
Pacific 8,456 8,587 8,289 6,551 6,880 6,880 7,180 8,664 9,816 12,275

Note: For this table we have again summed the land values in a division and divided it by the sum of the acreages in
that division for a measure of price-per-acre. Single family residence value can be found in Table 3. All dollar values
are nominal USD.

In Table 5 we report composite estimates for industrial and commercial land. While still showing some

pro-cyclical dynamics, compared to residential land values, our estimates of industrial and commercial land

values over this period are somewhat flatter over this decade. Commercial land is generally more valuable

than industrial land, which is likely due to a number of well-documented factors like differences in location.

For example, if commercial land is more likely to be located in more densely populated areas near residential

land, then we would expect land to reflect both this amenity value and opportunity cost. However, we should

again express some caution with our estimates of non-residential land, which are derived from a coarser set of

data. We return to this point in the Discussion section below.



Table 5: Regional Non-Residential Price-Per-Acre: Composite Values
Division 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Industrial

New England 264,834 240,673 278,049 231,625 208,919 172,049 212,051 151,694 152,244 144,839
Middle Atlantic 287,901 313,559 333,352 284,977 283,289 285,061 284,502 264,872 314,253 387,342
East North Central 185,345 198,609 176,237 156,989 134,830 142,393 112,939 160,233 142,674 175,560
West North Central 194,129 210,856 184,506 151,394 157,154 136,883 128,426 158,893 181,290 150,434
South Atlantic 205,621 197,092 188,199 147,447 141,103 121,589 106,123 136,190 154,305 170,128
East South Central 49,286 67,664 68,699 67,002 67,097 77,079 76,464 44,352 54,124 64,464
West South Central 56,133 57,388 71,639 68,062 62,352 81,359 89,423 92,742 94,908 88,059
Mountain 253,935 280,651 308,962 221,715 231,193 253,301 270,693 278,862 346,988 372,977
Pacific 391,233 469,532 457,849 400,352 395,858 437,453 374,092 360,895 496,777 574,450

Commercial

New England 448,719 473,367 490,004 404,556 408,964 414,921 423,793 366,330 413,789 363,923
Middle Atlantic 628,399 786,175 698,084 614,971 571,250 617,417 597,235 589,558 652,674 721,703
East North Central 287,068 295,920 266,207 225,368 207,810 210,658 171,966 237,716 233,440 251,440
West North Central 374,195 392,757 297,098 236,333 245,726 220,230 212,644 219,386 266,732 270,761
South Atlantic 269,131 295,491 281,760 239,798 236,666 230,968 230,112 233,310 258,187 286,738
East South Central 92,578 96,044 96,954 82,869 84,121 88,687 105,229 109,732 117,065 152,510
West South Central 178,718 223,737 178,479 167,578 139,569 147,469 152,428 159,266 211,474 236,729
Mountain 774,877 838,801 798,861 659,530 559,095 530,936 512,820 588,706 665,155 764,276
Pacific 663,015 672,698 610,105 557,577 547,155 568,834 566,147 606,654 896,146 1,012,348

Note: For this table we have again summed the land values in a division and divided it by the sum of the acreages in
that division for a measure of price-per-acre. All dollar values are nominal USD.

5.2 National and Census Division results for all land types

The price estimates in the prior subsection provide important information about property markets over this

period; however, as a more general point, we should emphasize that prices tell only part of a larger story. The

national economic accounts aggregate economic activity by measuring national income and expenditures in

GDP, for example, which is the sum total of relevant prices and quantities. For the national balance sheet (in

the Integrated Macroeconomic Accounts), BEA and the Federal Reserve value assets in these terms as well.

Hence, we follow a similar approach by (Wentland et al., 2020) that uses detailed land-use data to provide

corresponding quantities of land for the contiguous United States to construct a pilot accounting of private

land as an asset. The National Land Use Database (NLUD) provides a nearly exhaustive accounting of land

use in the contiguous U.S., which leverages detailed data from numerous sources to depict how land is used

across the categories relevant for this study.46 One drawback of this source is that the NLUD was initially

developed for only a single year, 2010, which we use here. Because land-use does not change particularly

rapidly (e.g., once a property is built residential, it generally stays that way for decades, given the relatively

long lifespan of most structures), a snapshot of land-use is sufficient for a proof-of-concept account; however,

a regularly produced NLUD or equivalent would be essential for production of an official account. We return

to this point in the next section, as we discuss how this data would need to be augmented or even replaced

by official sources if BEA would transition this proof-of-concept work into an official account.

Table 6 accounts for the total asset value of land by census division, land type, and year. Overall, private

land in the contiguous U.S. was worth a staggering 27.27 trillion nominal dollars in 2006. By 2011 this had

46The NLUD was derived from "two-dozen publicly-available, national spatial datasets – predominately based on
census housing, employment, and infrastructure, as well as land cover from satellite imagery... result[ing] in 79 land use
classes" Theobald (2014). In the online appendix (See Tables A1 through A4), we show how we collapsed the land-use
categories from the NLUD to the corresponding categories in ZTRAX’s land-use designations, directly following the
classification scheme in (Wentland et al., 2020).



Table 6: Land Value Totals by Division
NLUD 2010 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Pacific

Dense Urban 237 1,156 1,050 772 601 605 537 508 699 866 940
Urban 2,415 2,337 2,097 1,546 1,186 1,138 1,077 1,042 1,304 1,745 1,769
Suburban 1,629 1,481 1,804 1,266 1,053 1,083 1,013 1,039 1,316 1,526 1,766
Rural 9,893 285 301 254 215 190 185 169 189 216 240
Commercial 611 405 411 373 341 334 348 346 371 548 619
Industrial 261 102 123 119 104 103 114 98 94 130 150
Agricultural 78,480 664 674 651 514 540 540 563 680 770 963

Mountain

Dense Urban 81 138 107 86 44 42 39 57 87 98 131
Urban 1,383 654 628 606 366 403 507 605 650 727 843
Suburban 1,263 448 529 440 339 354 341 365 408 461 531
Rural 7,587 171 172 162 136 129 116 117 124 138 148
Commercial 521 404 437 416 344 291 277 267 307 347 398
Industrial 212 54 59 65 47 49 54 57 59 74 79
Agricultural 218,751 1,182 1,533 1,252 929 704 686 752 754 720 872

West North Central

Dense Urban 49 66 64 64 52 50 39 38 39 48 47
Urban 1,377 676 627 538 452 464 370 374 427 530 526
Suburban 1,246 290 286 243 230 216 214 225 229 247 *
Rural 11,073 76 77 77 62 62 60 58 55 74 68
Commercial 510 191 200 152 121 125 112 108 112 136 138
Industrial 268 52 57 49 41 42 37 34 43 49 40
Agricultural 269,990 1,177 1,184 1,286 1,216 1,195 1,188 1,502 1,409 1,514 1,436

East North Central

Dense Urban 148 281 261 234 202 188 160 141 147 171 177
Urban 2,872 859 696 618 583 564 513 441 454 538 605
Suburban 2,640 655 622 515 476 421 373 365 398 435 458
Rural 24,793 203 158 147 123 112 114 136 163 187 195
Commercial 715 205 212 190 161 149 151 123 170 167 180
Industrial 441 82 88 78 69 59 63 50 71 63 77
Agricultural 95,720 488 482 476 458 471 481 524 555 574 600

West South Central

Dense Urban 98 61 71 59 69 66 59 62 56 51 55
Urban 2,066 521 484 418 443 445 342 403 473 583 543
Suburban 2,318 102 109 108 97 93 93 71 73 72 84
Rural 22,875 75 73 73 73 73 72 74 77 83 86
Commercial 809 145 181 144 136 113 119 123 129 171 192
Industrial 388 22 22 28 26 24 32 35 36 37 34
Agricultural 207,344 391 424 374 280 322 396 490 550 661 640

East South Central

Dense Urban 32 39 38 33 33 32 30 28 29 31 31
Urban 797 181 188 167 156 155 152 150 157 168 188
Suburban 1,810 110 105 94 96 141 171 163 169 177 *
Rural 29,328 60 60 60 60 60 59 59 59 63 65
Commercial 412 38 40 40 34 35 37 43 45 48 63
Industrial 240 12 16 16 16 16 18 18 11 13 15
Agricultural 64,973 188 179 172 160 151 148 157 155 159 184

South Atlantic

Dense Urban 210 567 552 429 319 289 235 234 259 271 307
Urban 3,049 1,944 1,792 1,310 730 639 606 710 785 891 1,078
Suburban 5,116 1,054 952 787 588 508 471 514 557 628 711
Rural 44,969 722 662 634 554 517 473 479 444 462 510
Commercial 886 238 262 250 212 210 205 204 207 229 254
Industrial 375 77 74 71 55 53 46 40 51 58 64
Agricultural 67,551 593 555 433 349 331 294 271 268 297 348

Middle Atlantic

Dense Urban 232 815 777 739 681 686 670 630 653 666 656
Urban 1,462 1,083 1,025 962 891 920 876 842 870 930 949
Suburban 2,171 792 778 724 666 635 572 549 547 557 577
Rural 19,415 184 179 166 153 154 144 130 161 176 158
Commercial 311 195 245 217 191 178 192 186 183 203 224
Industrial 151 43 47 50 43 43 43 43 40 47 58
Agricultural 21,632 99 107 123 107 100 99 97 96 100 97

New England

Dense Urban 61 268 248 231 218 216 228 257 295 321 341
Urban 669 599 550 462 394 375 350 368 421 449 462
Suburban 1,176 511 493 435 397 384 369 357 362 365 377
Rural 10,836 426 393 354 306 303 262 253 239 250 260
Commercial 196 88 93 96 79 80 81 83 72 81 71
Industrial 90 24 22 25 21 19 15 19 14 14 13
Agricultural 15,761 217 185 194 214 169 165 184 58 242 406

U.S. National Totals 1,264,975 27,265 26,919 23,154 19,313 18,617 17,834 18,431 19,913 22,653 24,099

Note: Acres are in thousands of acres. All dollar figures are in billions of nominal dollars.

dropped by nearly 36% to 17.8 trillion dollars but largely had recovered by 2015 (24.1 trillion).47 Nearly

20% of the 2006 value was in single family housing alone; and, all residential (dense urban, urban, single

family/suburban, and rural) accounting for nearly 73% of the total land value in 2006. The relative ordering

of the asset values by region is as expected. The most valuable region, by aggregate private land value, is the

Pacific region, which includes California, Oregon, and Washington. This is not surprising considering the

well-documented evidence of high property prices in those states. The least valuable region is the East South
47To calculate this we use our price-per-acre measure (the price) times the acreage (quantity) in that particular

land group as denoted by the 2010 figures from NLUD (see (Wentland et al., 2020) for a similar exercise).



Central, which includes states such as Kentucky, Tennessee, and Alabama. Though overall values are ordered

as expected, there is significant heterogeneity between the values of individual land types, some of which is

driven by the relative size of that land type in the area.

A careful examination of the table will also reveal that, while it is officially the case that the [Great] Recession

ended in June of 2009 (as dated by the NBER), many regions did not experience the trough until 2011-2013.

To make the time-series dynamics clearer, we graph the total land asset value by each division in Figure 6a,

and in Figure 6b we provide a min-max transformation that better illustrates peak-trough dynamics. A new

insight from this account, which unlike (Wentland et al., 2020) provides a yearly accounting of land value,

is that the value of private land in the U.S. bottomed out over five years, which varied regionally. All nine

census divisions peaked in 2006 or 2007; yet, some experienced the bottom of the trough in 2009, 2010, 2011,

2012, and even 2013. This is not immediately apparent viewing pricing data alone, and one of the many

more nuanced insights a national account can offer by aggregating total value by the product of prices and

quantities. Given that the U.S. had numerous policies related to the bust in asset prices over this time period,

the timing, absolute values, and regional variation are all potentially highly relevant data points that could

inform future policymakers if this type of data were available going forward.

Figure 6: U.S. Private Land Asset Value by Division

(a) (b)

Note: Here we have plotted the aggregate land value by division in Figure 6a. While the scale hides some of the
variation, especially in less expensive divisions, you can clearly see a procyclical pattern emerging. In Figure 6b we
transformed the value using a min-max transformation. This allows us to see the peak for each division (where the
max=1), as well as when each division experienced the trough (where min value=0).

6 Robustness to further out-of-sample testing: vacant land comparison

Though they are not used for deriving the land value estimates reported above, the Ztrax data set contains

data on more than one million vacant residential land transactions over our sample period. As a robustness

check, we compare our land estimates for single-family residential property to nearby sales of vacant land.

However, we should express caution in such a comparison, given the previously discussed selection bias issues



with vacant land. 48 With these limitations in mind we use the vacant land transactions as an out-of-sample

validation of our land estimates because, while imperfect, they are actual transactions that take place in the

marketplace.

So, while vacant land transactions may not be representative of all developed land, the aforementioned selection

issues should be mitigated in at least a couple circumstances. First, they should be more representative of

fair-market land value of property in the immediate, adjacent area than areas further away. For instance,

much of vacant land may be sold at the outskirts of developed areas; so, while vacant land on the far reaches

of the suburbs may not extrapolate well to developed land near the central business district (CBD), it may

proxy reasonably well for other nearby land at the outskirts. Second, when there are periods of higher

development and thus higher volume of vacant land sales in residential developments, we should expect this

higher volume to be more representative than periods when sales are scant. When these conditions are

satisfied, we should observe more comparable developed land values and vacant land values.

Thus, to generate a more apples-to-apples comparison of vacant land and nearby developed land, we use

the geolocation of a sold parcel we draw a circle with radius of one-tenth of a mile around the plot.49 For

example, in Figure 7 we have plotted the assessment set first shown in Figure 2b. If this tract were to have a

vacant plot sold as indicated in Figure 7b, then our donut would be as indicated. This polygon would serve

as our comparable area with respect to local geography. We exclude the first 1/100th of a mile so as to avoid

same year plot sales post development. This leaves us with a small donut shaped polygon with total area of

approximately 0.03 square-miles, or 19 square-acres. Using this polygon, we identify properties nearby in

our assessment set for which we have land estimates. If there were no nearby properties we simply dropped

that plot for the purposes of this exercise, keeping a small, yet more comparable, subsample of the data for

comparison.

The end result is over half a million vacant land transactions across the thirty-six states examined. In Table 7

we have provided the number of vacant plots by year along with the median (observed) price and acreage for

those plots. Note that, while half a million vacant land transactions seems like a large sample at first glance,

the within-year number of transactions varies between 28, 000 and 67, 000. This could further be broken

down across the thirty-six states and should be apparent that, over time and geography this sample is not

very large. Using the donut buffer described above, each transacted vacant plot is matched to, on average,

forty nearby [developed] plots from the assessment set. 50

48For example, a vacant plot may be smaller, more oddly shaped, or geographically/environmentally undesirable
(e.g., it could be the lowest elevation in the area and thus the most likely to flood). Second, despite their being over
one million transactions, these take place over the full time span of the data and across the entire geographical region
examined. In practice, for each state in each time period there is significantly less data from which we can compare.

49We have also done this with larger radius circles but as the radius grows the likelihood of being near comparable
plots of land decreases since these are not walking distance radii but rather as the crow flies.

50This is not to say that every plot has many nearby matches; in fact, some vacant plots are only matched to a single
nearby developed plot within the geography we have outlined, and some have as many as 200 nearby comparisons.



Figure 7: Matching Vacant Land Plots to Nearby Developed Plots

Note: To match nearby developed plots with vacant land transactions we create a buffer of 0.10 miles with an
exclusion range of 0.01 miles. In some cases, such as those illustrated above, there may be many comparable developed
properties while in others there may be far fewer. Vacant land transactions are limited to those zoned for single family
residential use.

Table 7: Vacant Land Comparison by Year
Year Vacant Plots Median Price Median Acreage Nearby Price Nearby Acreage Nearby Plots
2004 48,750 50,000 0.38 52,569 0.36 40.21
2005 67,772 66,900 0.42 66,082 0.40 37.69
2006 54,022 65,000 0.46 69,181 0.43 40.40
2007 43,855 57,500 0.45 61,863 0.44 41.55
2008 33,212 44,803 0.42 49,515 0.41 42.42
2009 28,705 35,000 0.41 37,201 0.40 43.31
2010 29,968 30,000 0.43 35,654 0.41 42.55
2011 28,075 30,000 0.43 34,602 0.42 41.14
2012 32,838 30,000 0.43 36,357 0.41 41.15
2013 41,736 39,500 0.43 43,892 0.41 41.69
2014 50,145 47,500 0.42 51,857 0.40 42.09
2015 65,566 79,696 0.35 63,391 0.37 41.08

Note: The Ztrax dataset contains just over one million vacant land transactions for the thirty-six states examined.
Here we are comparing the median price of these vacant plots within each year to nearby [developed] plots from
the assessment set. The land prices used are the composite prices which are the weighted average of the hedonic
regression and machine learning predictions. Each vacant plot is matched to a developed plot within an interval of
(0.01, 0.10) miles from the vacant plot. The Nearby Plots column provides the average number of matches per vacant
plot. Note that vacant land transactions are not used in our estimation of the parcel level land values and thus this is
an out-of-sample comparison.

The summary statistics for this comparison show that developed plots tend to be slightly smaller in terms of

median acreage and – as expected if one were to think of possible selection bias in vacant land – the median

price for nearby plots is slightly higher. Note that we have restricted the conversation to our composite

estimate of the parcel-level land value, that is the weighted combination of land values from the hedonic

model and machine learning model as outlined in Equation 8. With a higher price and a lower acreage, the

overall price-per-acre for the developed plots is higher than that of the vacant land, consistent with a selection

bias argument. However, overall, the vacant land prices and the land prices from the developed properties

are in the same ballpark, giving us more confidence that our results are not radically different than what we

might observe in market transactions of land-alone.



Figure 8 shows that this comparison between our estimates and nearby vacant land sales is consistent with the

economic intuition outlined above. Vacant land transactions showed the least bias/error when compared to

our nearby valuations of developed land for all models during 2004-2006 (peaking in 2005). This corresponded

to the peak of the housing construction boom in the U.S. Indeed, over the entire time-series, as we find a

strong negative correlation between vacant land bias and new housing starts, a key national indicator for

residential construction/investment.51 Given the negative correlation, we graph the inverse of New Housing

Starts nationally on Figure 8, which shows that the series peaked in 2005, collapsed through 2009, and

stagnated through 2015. Thus, if our models are estimating the true market value of this subset of land,

this mirrored bias over the business cycle provides evidence consistent with what we would expect. Taken

together, the out-of-sample price validation for vacant land and property sale prices of developed land provide

robust evidence that our models, and the composite method in particular, robustly track market values in

line with the spirit SNA valuation principles for the national accounts.52

Figure 8: Prediction Error for Vacant Land Mirrors New Housing Starts

Note: Here we have plotted the mean error for each year produced by comparing the observed vacant land sales and
the nearby land estimates using developed properties. The dashed line represents new housing starts (NHS) through
the transformation 1 − NHS/max(NHS) with peak new housing starts occurring in 2005. Orange squares represent
the error produced when comparing estimates from the linear hedonic model to vacant land prices while blue triangles
represent the error from gradient boosted trees. The grey circles represent the error produced by an OLS weighted
composite forecast between the two methods. The error of all three methods – linear hedonic, gradient boosted trees,
and composite – are all correlated with changes in new housing starts.

51This series is produced by Census and HUD, which can be found at: https://fred.stlouisfed.org/series/
HOUST1F.

52Clapp and Lindenthal (2022) provide an additional test to compare models, which uses the land value as a
determinant of price. In untabulated tests we have found that our composite measure also performs well using their
novel validation approach; however, for brevity we omit the results and they are available upon request.

https://fred.stlouisfed.org/series/HOUST1F
https://fred.stlouisfed.org/series/HOUST1F


7 Discussion

7.1 Data Gaps

Though the main contribution of this paper is methodological, the estimates produced by the application of

this method to ZTRAX data demonstrate one way both ML methods and Big Data could come together

to produce a pilot national account for land value for the US. However, we should reiterate here that these

estimates are not yet official statistics produced by BEA. Instead, these estimates provide a proof-of-concept

that are both illustrative from an academic standpoint and a practical standpoint. For this to be an official

account, a number of data limitations would need to be addressed, which we discuss below.

The primary data limitation that would need to be addressed would be filling gaps in both the price and

quantity data. We have already mentioned ZTRAX’s chief limitation, which is that it does not include sale

price data for states whose local municipalities do not disclose final sale price data. And, in some states

where some municipalities do disclose this information, there is sufficient missing data that we omit the states

when we derive our estimates (e.g., Louisiana, Maine, and Vermont). An assumption we make in our national

and census division estimates above is that the omitted and missing states are reasonably proxied by their

neighboring states for the aggregate estimates; but, for some divisions this assumption may strain credulity

(e.g., the West South Central division missing Texas). Data outside the ZTRAX dataset is available for

purchase by various Big Data vendors, which include sale price data from non-disclosure states that could

potentially fill this gap.53

Although price data is available for Hawaii and Alaska, the NLUD does not yet include these states, nor does

it include the U.S. territories. BEA produces national economic accounts for all U.S. states and territories,

drawing on data sources that are representative of all localities. Future work would need to update the

NLUD to include these states/territories for a true national account. The United States Geological Survey

(USGS) is currently doing pioneering work on expanding the scope of land use and land cover data in the US,

including products by the Land Change Monitoring, Assessment, and Projection (LCMAP) that account for

land at fine levels of detail. Though they have not yet developed a comparable land-use product, a regularly

produced land-use product like the NLUD used in this study would provide a tractable path forward for a

comprehensive official national (and subnational) land account.54

As an alternative approach to using a (not yet available) land-use data source, another potential path forward

would be to use the land leverage estimates produced in this study to apply to existing figures in the national

53BEA has very recently purchased detailed data from another vendor, which has sale price data for the non-
disclosure states from non-municipal sources (like Multiple Listing Services), which we are currently exploring as
an avenue to fill this important gap and potentially update the estimates through 2022. Thus, the remedy for this
limitation is on the horizon, so-to-speak.

54See Wentland et al. (2020) for a discussion of a number of other challenges with using this data for land valuation,
including issues with dense urban and non-SFR properties in particular and the lack of detailed commercial/industrial
structure characteristics.

https://www.usgs.gov/special-topics/lcmap


accounts for the asset value of real estate underlying structures. The current balance sheets produced by

BEA and the Federal Reserve in the Integrated Macroeconomic Accounts provide some aggregate figures

for real estate, but the current configuration is not broken down precisely as we have done in this paper.

With some modifications, land leverage estimates derived from this study could provide a breakout of land

and structure value, limiting real estate value to the scope in which it is currently measured. But, given

the regional variation in land leverage we observe in the data, we are reluctant to apply these leverages to

national estimates as currently constituted on the balance sheet. A key takeaway from our regional figures is

that regional variation matters; and, leverage changes both over time and across regions. A more accurate

version of the land leverage approach would require use of the subnational data from which the real estate

values were constructed, which is data not available to us currently. One advantage of the approach proposed

in this paper is that it uses data sources that the general public can also access, facilitating transparency in

the national accounts. On the other side of that coin, an alternative approach using internal data would not

offer this benefit.

Finally, a key omitted land-use category is public lands, which, in the United States, are quite substantial

in terms of acreage. Depending on how one interprets who these assets belong to in an accounting sense,

it may not be necessary from the standpoint of the SNA to value these lands as an asset on the balance

sheet. However, much of these lands are used for purposes with private value (e.g., National Parks that

generate revenues, leased grazing lands, etc.) and play a role in our economy as measured by GDP. From

an environmental-economic accounting standpoint, these lands are in-scope of the accounts as defined by

SEEA-CF. Because our method relies on market prices to guide valuation, our approach would likely need to

be augmented (e.g., constraining the sample to lands adjacent to or around public lands). But, this presents

a number of conceptual and practical challenges that, in the interest of brevity, we leave for future work to

explore further. Nevertheless, the SNA prescribes cost-based methodologies for accounting for government

services in GDP, so having an alternative methodology for public sector valuation is also a potential path

forward for public lands.

7.2 Land Accounts in Context - Policy-relevance of Natural Capital Accounting and

Applications for Economic Decision-making

Policymakers across both the U.S. and broader the international community have directly called for the

development and production environmental-economic accounts and valuation of natural capital assets like

land. Recently, in the National Strategy to Develop Statistics for Environmental-Economic Decisions released

in January 2023, leadership from the White House’s Office of Science and Technology Policy, Office of

Management and Budget, and the U.S. Department of Commerce called for land and other natural assets to

be incorporated into our suite of national economic statistics in order to aid economic decision-making. They

argued:



“Natural assets, like land and water, underpin businesses, enhance quality of life, and act

as a stabilizing force for economic prosperity and opportunity. They also help counteract

the destabilizing risks to our environment and markets caused by climate change and nature

loss. Yet the connections between nature and the economy are not currently reflected in our

national economic statistics. . . Clearly measuring the quantity and value of natural capital

will enable more accurate economic growth forecasts and facilitate a more complete picture of

economic progress to inform how we prioritize investments.” (Preface, 2023 National Strategy

to Develop Statistics for Environmental-Economic Decisions)

The White House’s National Strategy makes numerous specific recommendations for developing and eventually

producing environmental-economic accounts across three phases over 13 years, where land accounts are

named among the first phase (Phase I). It designates land as, "an important early-phase account and a

priority for developing natural capital accounts" (p. 42), which is consistent with its place at the heart of

environmental-economic accounts described by the international standards (i.e., SEEA-CF and SEEA-EA).

The National Strategy goes on to describe why the inclusion of these assets are critical for policy-making,

including macroeconomic policy and promoting financial stability55:

“The dominant macroeconomic modeling frameworks implicitly assume, through the common

‘all else equal’ assumption, a constant environment and climate and an unchanging stock of

natural capital. However, climate change and systematic changes in natural capital generally

pose micro- and macro-prudential risk that can cause system-level shocks. A lack of clear

accounting generates greater vulnerability by undermining the ability to predict such shocks

or by generating systemic errors, through misallocation of causality and a failure to account

for connections among sectors, in the models used for macroeconomic planning... Also, a

lack of aggregate information about the market value of traded natural capital assets (e.g.,

land or mineral assets) makes it difficult to identify price inflation or deflation among

some asset classes. The organized data contained within natural capital accounts and other

environmental-economic statistics are important to achieving financial stability.” (p.6, 2023

National Strategy to Develop Statistics for Environmental-Economic Decisions)

Internationally, there is also widespread support for further development and production of environmental-

economic accounts to guide decision-making. For example, in a recent communiqué on April 16, 2023, the

G7 Ministers of Climate, Energy and Environment pledged to: “commit to regular publication of national

environmental-economic accounts guided by the UN System of Environmental-Economic Accounting. . . and

will promote their use in economic and financial decision-making” (2023 Communiqué, §24)56. Though these
55The full text of the White House’s National Strategy can be found here: https://www.whitehouse.gov/

wp-content/uploads/2023/01/Natural-Capital-Accounting-Strategy-final.pdf.
56The full text of the Communiqué from the G7 Ministers of Climate, Energy and Environment can be found here:

https://www.meti.go.jp/english/press/2023/0417_002.html.



applications are not exhaustive,57 it is important to note the broader context; methodological advances in

natural capital asset valuation are critical for this increasing demand for accurate, reliable, and comparable

environmental-economic statistics for decision-makers in the 21st century.

8 Conclusion

In the 21st century, the increasing promulgation of large datasets (so-called Big Data) in combination with

more advanced methods (like ML) present an opportunity for national statistics offices to exploit new ways

to create more accurate, timely, and detailed estimates of products, services, and assets (Abraham et al.,

2019). To answer the call of this new era, we cultivate a new approach to land valuation that leverages both

Big Data and ML methods to provide new pilot estimates of private land value in the contiguous U.S. for

a decade (2006-2015). Our results underscore the potential importance of private land as a quantitatively

significant asset on our national balance sheet, as private land in the U.S. was worth an estimated $24 trillion

in 2015. Considering that U.S. net wealth in 2015 (Q4) was about $81 trillion, this represents nearly 30% of

net wealth assets as measured by the Financial Accounts of the US.58 Another takeaway from our results in

this paper is that the time-series dynamics of land value, while generally procyclical over this period, did not

align precisely across the US. In fact, while land value reached its peak in 2006 or 2007 for each of the nine

census divisions, there was substantial regional variation in the timing of the trough. Regional bottoming

out occurred as early as 2009 for some census divisions and as late as 2013 for others. This highlights an

important point for economic policymakers and future researchers, that regional variation in land value differs

substantially in both severity and timing of peak-trough dynamics.

The approach we introduce in this paper opens the door to a host of new extensions. Methodologically, our

two-step ML approach, pairing kmeans clustering with gradient boosted trees (GBT), provides a substantial

increase in price prediction accuracy over traditional hedonic approaches in the vast majority of circumstances.

A key conclusion of this paper is that our model stacking approach, which produces a composite land value

based on a weighted combination of ML and hedonic models, outperforms all models individually in terms of

price prediction and other out-of-sample tests. Future work can further augment these models, use additional

data, and/or incorporate additional models in the stacking procedure to improve the accuracy of these

estimates even further.

In some ways, the potential uses and applications of this approach may also present a new frontier for future

work. Not only can future work build on these methods, but as we make our code available to everyone,
57For additional discussion of applications of natural capital accounting to public and private decision-making, see

also Vardon et al. (2016); Ruijs et al. (2019); Ingram et al. (2022); Obst and Vardon (2014); Fenichel and Hashida
(2019). For more discussion on land value applications, see Coomes et al. (2018).

58As we alluded to in the prior section, comparisons with the balance sheet should be taken with a grain of salt.
As it is currently constructed, it is not necessarily apples-to-apples and has a variety of differences between what is
currently measured in the Financial Accounts and how we measure land in this paper. We use this net wealth figure
purely for a reference point and not to imply that this is part of an official estimate. The full time series for U.S. net
wealth can be found here: https://fred.stlouisfed.org/series/BOGZ1FL892090005Q.

https://fred.stlouisfed.org/series/BOGZ1FL892090005Q


national statistical offices, academic researchers, professional appraisers, and others can take this approach

off the shelf to create micro or macro estimates. Whether users want to generate land values, property values,

and even borrow our clustering methods (to augment quasi-experimental research designs in urban economics),

the transparent methods we provide here may offer countless avenues of new inquiry. In a new era where

data is becoming increasingly plentiful, and accounting standards have an increasing emphasis on accurate

market values, having comparable and reliable methods may facilitate a host of new applications. A goal of

our research is to advance these ends, bridging the data and methods of micro-research and macroeconomic

accounts.
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